This paper discusses the development of a set of algorithms for the automatic nesting of ship/offshore structural plates. The algorithms are developed to take advantage of the peculiarity of most ship/offshore structural plates with the aims of optimising material usage and minimising computer search time. The parts to be nested are first processed by a shape processing routine which employs a simple feature extraction approach to classify the plates according to predefined rules specially adopted for ship/offshore structural shapes. The most appropriate search path for each class of plates is used to obtain the best enclosing rectangle for similar shapes. The search paths are based on heuristics developed to simulate the manual method used by the human operator. Finally, all the plates are laid out on the stock sheet using a “rectangle packing” approach. A computer package, Patnest-Ship was developed to demonstrate the efficiency of the algorithms and very encouraging results are achieved. The input and output files to and from Patnest-Ship are described in DXF format so that it can be integrated with existing CAD/CAM systems. Pre- and post-processors for this package have been implemented on AutoCAD to permit the user to define the plates and interactively improve on the solutions provided by Patnest-Ship, if necessary.

This content is only available via PDF.
You do not currently have access to this content.