Abstract

Conventional hard automation such as linkage mechanisms or cam-driven mechanisms provide high speed capability at a low cost (using typically one actuator), but fail to provide the flexibility required in many industrial applications. Manufacturers are increasingly turning to multi-axis robots to fulfill flexibility demands. In many cases, however, the flexibility requirements are limited; i.e. a given pick-and-place unit may be required to perform only a handful of different operations. Therefore, the expensive robots are under-utilized. By incorporating flexibility in conventional linkage-type mechanisms, we are developing adjustable robotic mechanisms (ARMs) to serve as a middle ground between hard automation and overly flexible serial-jointed industrial robots.

This content is only available via PDF.
You do not currently have access to this content.