Abstract
In this paper we introduce a methodology to reduce the effects of uncertainty in the design of a complex engineering system involving multiple decision makers. We focus on the uncertainty that is created when a disciplinary designer or design team must try and predict or model the behavior of other disciplinary subsystems. The design of a complex system is performed by many different designers and teams, each of which only have control over a small portion of the entire system. Modeling the interaction among these decision makers and reducing the uncertainty caused by the lack of global control is the focus of this paper. We use well developed concepts from the field of game theory to describe the interactions taking place, and concepts from robust design to reduce the effects of one decision-maker on another. Response Surface Methodology (RSM) is also used to reduce the complexity of the interaction analysis while preserving behavior of the systems. The design of a passenger aircraft is used to illustrate the approach, and some encouraging results are discussed.