Reducing the manufacturing and marketing time of products by means of integrated simulation-based design and development of the material, product, and the associated manufacturing processes is the need of the hour for industry. This requires the design of materials to targeted performance goals through bottom-up and top-down modeling and simulation practices that enables handshakes between modelers and designers along the entire product realization process. Manufacturing a product involves a host of unit operations and the final properties of the manufactured product depends on the processing steps carried out at each of these unit operations. In order to effectively couple the material processing-structure-property-performance spaces, there needs to be an interplay of the systems-based design of materials with enhancement of models of various unit operations through multiscale modeling methodologies and integration of these models at different length scales (vertical integration). This ensures the flow of information from one unit operation to another thereby establishing the integration of manufacturing processes (horizontal integration). Together these types of integration will support the decision-based design of the manufacturing process chain so as to realize the end product.

In this paper, we present a goal-oriented, inverse decision-based design method to achieve the vertical and horizontal integration of models for the hot rolling and cooling stages of the steel manufacturing process chain for the production of a rod with defined properties. The primary mathematical construct used for the method presented is the compromise Decision Support Problem (cDSP) supported by the proposed Concept Exploration Framework (CEF) to generate satisficing solutions under uncertainty. The efficacy of the method is illustrated by exploring the design space for the microstructure after cooling that satisfies the requirements identified by the end mechanical properties of the product. The design decisions made are then communicated in an inverse manner to carry out the design exploration of the cooling stage to identify the design set points for cooling that satisfies the new target microstructure requirements identified. Specific requirements such as managing the banded microstructure to minimize distortion in forged gear blanks are considered in the problem. The proposed method is generic and we plan to extend the work by carrying out the integrated decision-based design exploration of rolling and reheating stages that precede to realize the end product.

This content is only available via PDF.
You do not currently have access to this content.