Short beams are the key building blocks in many compliant mechanisms. Hence, deriving a simple yet accurate model of their elastokinematics is an important issue. Since the Euler-Bernoulli beam theory fails to accurately model these beams, we use the Timoshenko beam theory to derive our new analytical framework in order to model the elastokinematics of short beams under axial loads. We provide exact closed-form solutions for the governing equations of a cantilever beam under axial load modeled by the Timoshenko beam theory. We apply the Taylor series expansions to our exact solutions in order to capture the first and second order effects of axial load on stiffness and axial shortening. We show that our model for beam flexures approaches the model based on the Euler-Bernoulli beam theory when the slenderness ratio of the beams increases. We employ our model to derive the stiffness matrix and axial shortening of a beam with an intermediate rigid part, a common element in the compliant mechanisms with localized compliance. We derive the lateral and axial stiffness of a parallelogram flexure mechanism with localized compliance and compare them to those derived by the Euler-Bernoulli beam theory. Our results show that the Euler-Bernoulli beam theory predicts higher stiffness. In addition, we show that decrease in slenderness ratio of beams leads to more deviation from the model based on the Euler-Bernoulli beam theory.

This content is only available via PDF.
You do not currently have access to this content.