Abstract
Rotorcraft are known to suffer from relatively high levels of vibration as compared to their fixed-wing counterpart, due to exposure to significant vibratory load levels. Pilots usually operate in a vibrating cockpit, and hence can suffer from degradation of their instrument reading performance. Therefore, the expected level of degradation in visual performance should be estimated when there is room for design changes. The present work demonstrates the evaluation of visual vibration degradation of helicopter pilots using a modular analysis environment. Core elements are an aeroelastic helicopter model, a seat-cushion model, a detailed human biodynamics multibody model, and a simplified model of ocular dynamics, which are assembled into an overall model. The contribution of each component is examined using a figure of merit that includes both eye and instrument panel vibration.