Heat transfer optimization is ubiquitous because improving heat transfer performance could increase the energy utilization or reduce the weight or size of heat transfer equipments. This article discusses the optimization in heat transfer using the new physical quantity, entransy, in recent years. Entransy describes the heat transfer ability. When heat is transferred from a high temperature to a low temperature and entransy dissipation is produced. Heat transfer is irreversible from the viewpoint of entransy. The entransy transfer efficiency can be defined using the concept of entransy. Definition of entransy, entransy flux, and entransy dissipation are given and the entransy balance equations are derived for conduction, convection and thermal radiation based on the energy equation. The minimum entransy dissipation principle for prescribed heat flux boundary conditions and a maximum entransy dissipation principle for prescribed temperature boundary conditions are investigated. These two principles are called entransy dissipation extreme (EDE) principle. An equivalent or average thermal resistance of a system can be defined based on the entransy dissipation and the EDE principle becomes the minimum thermal resistance principle. These principles can be used to optimize heat transport with constraints and some examples are presented. The relation of entransy with thermomass is discussed and comparison between EDE and entropy generation optimization is made. The essence of the entansy is the energy of thermomass.
Skip Nav Destination
2010 14th International Heat Transfer Conference
August 8–13, 2010
Washington, DC, USA
Conference Sponsors:
- Heat Transfer Division
ISBN:
978-0-7918-4936-1
PROCEEDINGS PAPER
Mass Nature of Heat and Its Applications V: Entransy, Entransy Dissipation and Heat Transfer Irreversibility
Xin-Gang Liang,
Xin-Gang Liang
Tsinghua University, Beijing, China
Search for other works by this author on:
Qun Chen
Qun Chen
Tsinghua University, Beijing, China
Search for other works by this author on:
Xin-Gang Liang
Tsinghua University, Beijing, China
Qun Chen
Tsinghua University, Beijing, China
Paper No:
IHTC14-22422, pp. 847-856; 10 pages
Published Online:
March 1, 2011
Citation
Liang, X, & Chen, Q. "Mass Nature of Heat and Its Applications V: Entransy, Entransy Dissipation and Heat Transfer Irreversibility." Proceedings of the 2010 14th International Heat Transfer Conference. 2010 14th International Heat Transfer Conference, Volume 1. Washington, DC, USA. August 8–13, 2010. pp. 847-856. ASME. https://doi.org/10.1115/IHTC14-22422
Download citation file:
10
Views
0
Citations
Related Proceedings Papers
Thermal Issues in Next Generation Integrated Circuits
InterPACK2003
Related Articles
A Holistic Optimization of Convecting-Radiating Fin Systems
J. Heat Transfer (December,2002)
Heat Conduction in a Rectangular Tube With Eccentric Hot Spots
J. Thermal Sci. Eng. Appl (December,2011)
A Numerical Study of the Thermal Performance of a Tape Ball Grid Array (TBGA) Package
J. Electron. Packag (June,2000)
Related Chapters
Radiation
Thermal Management of Microelectronic Equipment
Radiation
Thermal Management of Microelectronic Equipment, Second Edition
Control and Operational Performance
Closed-Cycle Gas Turbines: Operating Experience and Future Potential