Optimal positions for aeroelastic vehicle feedback sensors, which meet design constraints and control requirements, are difficult to determine. This paper introduces a systematic and optimal approach for choosing sensor locations based on gain stability criteria. A steepest descent optimization method with constraints is used to minimize such objective criteria, which are based on the dipole magnitudes for each aeroelastic mode appearing in a traditional Evans diagram for a scalar control loop. Each dipole magnitude term is multiplied by a weight parameter. Rigid-body augmentation characteristics are implicitly accounted for in the type of input-output pairs utilized and in predefined loop compensation structure. Constraints enforcing minimum phase zeros in the transfer function are also considered. A flexible aircraft structure is used as an example to demonstrate this procedure. Results indicate flight control and structural mode control characteristics can be effectively balanced.

This content is only available via PDF.
You do not currently have access to this content.