This numerical investigation studied the effects which the temperature dependence of surface tension (Marangoni phenomenon) and viscosity has on the spreading, the transient behavior and final post-solidification shape of a molten Sn63Pb solder droplet deposited on a flat substrate. A Lagrangian finite element formulation of the complete axisymmetric Navier-Stokes equations was utilized for the description of the droplet behavior. Linear temperature dependence for the surface tension and an exponential dependence for the viscosity were assumed. The initial droplet temperature was varied in 50K steps from 200°C to 500°C, whereas the substrate temperature was kept constant at 25°C. This varied the initial Reynolds number Re0 from 360 to 716 and the Marangoni number Ma from −9 to −49. The initial Weber number We0 and initial Prandtl number Pr0 were for all cases O(1) and O(10−2), respectively. The impact velocity and the droplet diameter remained unchanged in all cases examined at 1.5 m/s and 80 microns. A major finding of the work was that, contrary to intuition, the Marangoni effect decreased droplet spreading monotonically. Due to the Marangoni effect, surface tension forces instead of freezing arrested spreading. Droplet receding during recoiling was aided by the Marangoni effect. On the other hand, the change of viscosity with temperature showed no significant influence on the outcome of the droplet impact.
Skip Nav Destination
ASME 2002 International Mechanical Engineering Congress and Exposition
November 17–22, 2002
New Orleans, Louisiana, USA
Conference Sponsors:
- Heat Transfer Division
ISBN:
0-7918-3638-X
PROCEEDINGS PAPER
Marangoni and Variable Viscosity Phenomena in Picoliter Size Solder Droplet Deposition
M. Dietzel,
M. Dietzel
Swiss Federal Institute of Technology, Zurich, Switzerland
Search for other works by this author on:
S. Haferl,
S. Haferl
Swiss Federal Institute of Technology, Zurich, Switzerland
Search for other works by this author on:
Y. Ventikos,
Y. Ventikos
Swiss Federal Institute of Technology, Zurich, Switzerland
Search for other works by this author on:
D. Poulikakos
D. Poulikakos
Swiss Federal Institute of Technology, Zurich, Switzerland
Search for other works by this author on:
M. Dietzel
Swiss Federal Institute of Technology, Zurich, Switzerland
S. Haferl
Swiss Federal Institute of Technology, Zurich, Switzerland
Y. Ventikos
Swiss Federal Institute of Technology, Zurich, Switzerland
D. Poulikakos
Swiss Federal Institute of Technology, Zurich, Switzerland
Paper No:
IMECE2002-32111, pp. 15-22; 8 pages
Published Online:
June 3, 2008
Citation
Dietzel, M, Haferl, S, Ventikos, Y, & Poulikakos, D. "Marangoni and Variable Viscosity Phenomena in Picoliter Size Solder Droplet Deposition." Proceedings of the ASME 2002 International Mechanical Engineering Congress and Exposition. Heat Transfer, Volume 7. New Orleans, Louisiana, USA. November 17–22, 2002. pp. 15-22. ASME. https://doi.org/10.1115/IMECE2002-32111
Download citation file:
5
Views
Related Proceedings Papers
Related Articles
Marangoni and Variable Viscosity Phenomena in Picoliter Size Solder Droplet Deposition
J. Heat Transfer (April,2003)
Deformation of a Droplet in a Channel Flow
J. Fuel Cell Sci. Technol (November,2008)
Ejection Process Simulation for a Piezoelectric Microdroplet Generator
J. Fluids Eng (November,2006)
Related Chapters
Small Raindrops
Case Studies in Fluid Mechanics with Sensitivities to Governing Variables
Regression Target – Objective Function
Nonlinear Regression Modeling for Engineering Applications: Modeling, Model Validation, and Enabling Design of Experiments
Aerial Image Classification Using Fuzzy Miner
International Conference on Advanced Computer Theory and Engineering (ICACTE 2009)