Fluid transport systems are rarely at steady state. Transient phenomena, such as water hammer, can inflict severe physical damage. Repair costs can soar into the millions of dollars (Myers, 1997), and can reduce or even halt operation. Such high amplitude vibrations may be attenuated with particle dampers, which are beds of small particles placed in an attached enclosure or contained void. Vibration of the enclosure causes the particles to collide with each other and with the enclosure walls, resulting in energy dissipation through inelastic impacts and friction. Particle dampers have many advantages over conventional viscoelastic treatments including lower cost, increased robustness, greater effectiveness at high amplitudes and the ability to operate in extreme-temperature environments. Previous papers focus on exploration of sensitivity to design parameters, modeling techniques, and effective applications. However, there still remains much that is unknown about the phenomena and design of particle dampers. In this paper, experiments were performed to explore the effects of friction, excitation amplitude, and particle gap size. The formation of an oily residue on the colliding surfaces when certain materials were used increased friction and reduced damper effectiveness. This agrees with the theoretical prediction made by Mansour and Filho (1974). Damping was found to peak at an optimum gap size. Increasing the excitation amplitude resulted in higher damping and reduced sensitivity to the optimum gap size. Overall, the particle damper was deemed to be successful, increasing the loss factor of a clamped beam by over 10 times with a damper/structure mass ratio of only 0.016.
Skip Nav Destination
ASME 2002 International Mechanical Engineering Congress and Exposition
November 17–22, 2002
New Orleans, Louisiana, USA
Conference Sponsors:
- Noise Control and Acoustics Division
ISBN:
0-7918-3643-6
PROCEEDINGS PAPER
Attenuation of High Amplitude Vibrations With Particle Dampers
Michael Y. Yang,
Michael Y. Yang
Pennsylvania State University, University Park, PA
Search for other works by this author on:
Gary H. Koopmann,
Gary H. Koopmann
Pennsylvania State University, University Park, PA
Search for other works by this author on:
George A. Lesieutre,
George A. Lesieutre
Pennsylvania State University, University Park, PA
Search for other works by this author on:
Stephen A. Hambric
Stephen A. Hambric
Pennsylvania State University, State College, PA
Search for other works by this author on:
Michael Y. Yang
Pennsylvania State University, University Park, PA
Gary H. Koopmann
Pennsylvania State University, University Park, PA
George A. Lesieutre
Pennsylvania State University, University Park, PA
Stephen A. Hambric
Pennsylvania State University, State College, PA
Paper No:
IMECE2002-32689, pp. 113-118; 6 pages
Published Online:
June 3, 2008
Citation
Yang, MY, Koopmann, GH, Lesieutre, GA, & Hambric, SA. "Attenuation of High Amplitude Vibrations With Particle Dampers." Proceedings of the ASME 2002 International Mechanical Engineering Congress and Exposition. Noise Control and Acoustics. New Orleans, Louisiana, USA. November 17–22, 2002. pp. 113-118. ASME. https://doi.org/10.1115/IMECE2002-32689
Download citation file:
7
Views
0
Citations
Related Proceedings Papers
Related Articles
On Vibration Suppression and Energy Dissipation Using Tuned Mass Particle Damper
J. Vib. Acoust (February,2017)
Vibration Damping Through Liquid Sloshing, Part 2: Experimental Results
J. Vib. Acoust (January,1992)
Reduced-Order Modeling of Bladed Disks With Friction Ring Dampers
J. Vib. Acoust (December,2017)
Related Chapters
Random Turbulence Excitation in Single-Phase Flow
Flow-Induced Vibration Handbook for Nuclear and Process Equipment
Advances in the Stochastic Modeling of Constitutive Laws at Small and Finite Strains
Advances in Computers and Information in Engineering Research, Volume 2
HIGH STRAIN WELD SOLUTIONS FOR GEOHAZARD ACTIVE ENVIRONMENT
Pipeline Integrity Management Under Geohazard Conditions (PIMG)