This paper treats the question of adaptive control of a projectile fin using a piezoelectric actuator. The hollow projectile fin is rigid, within which a flexible cantilever beam with a piezoelectric active layer is mounted. The model of the fin-beam system includes the aerodynamic moment which is a function of angle of attack of the projectile. The rotation angle of the fin is controlled by deforming the flexible beam which is hinged at the tip of the rigid fin. It is assumed that the system parameters are completely unknown and that only the fin angle and its derivative are measured for synthesis. A linear combination of the fin angle and fin’s angular rate is chosen as the controlled output variable and an adaptive servoregulator is designed for the control of the fin angle and the rejection of the disturbance input (aerodynamic moment). In the closed-loop system, the fin angle asymptotically converges to the desired value and the elastic modes converges to their equilibrium values. Computer simulation is performed which shows that in the closed-loop system, the fin angle is precisely controlled in spite of uncertainties in the fin-beam parameters and the aerodynamic moment coefficients. Furthermore, a laboratory model of the projectile fin is developed and the adaptive controller is implemented for real-time control. Experimental results are presented which show that adaptive servoregulator accomplishes fin angle control.

1.
Batra
R. C
and
Ghosh
K.
,
Deflection Control during Dynamic Deformations of a Rectangular Plate Using Piezoceramic Elements
AIAA Journal
, Vol.
33
, No.
8
: Technical Notes, pp.
1547
1548
,
1995
.
2.
Lin
C. C.
,
Hsu
C. Y.
and
Huang
H. N.
,
Finite element analysis on deflection control of plates with piezoelectric actuator
,
Composite Structures
, Vol.
35
, pp.
423
433
,
1997
.
3.
Rabinovitch
O.
, and
Vinson
J.
,
On the design of piezoelectric smart fins for flight vehicles
,
Smart Materials and Structures
, Vol.
12
, pp.
686
695
,
2003
.
4.
Rabinovitch
O.
, and
Vinson
J.
,
Smart fins: Analytical modeling and basic design concepts
,
Mech. Adv. Mater. Struct.
, Vol.
10
, pp.
249
269
,
2003
.
5.
Barrett
R.
,
Active plate and missile wing development using directionally attached piezoelectric elements
,
AIAA Journal
, Vol.
32
, No.
3
, pp.
601
609
,
1994
.
6.
Bent
A. A.
,
Hagood
N. W.
, and
Rodgers
J. P.
,
Anisotropic actuation with piezoelectric fiber composites
,
Journal of Intelligent Materials Systems and Structures
, Vol.
6
, No.
3
, pp.
338
349
,
1995
.
7.
Shen
Y.
, and
Homaifar
A.
,
Vibration Control of Flexible Structures with PZT Sensors and Actuators
,
Journal of Vibration and Control
,
7
, pp.
417
451
,
2001
.
8.
Bailey
T.
and
Hubbard
J. E.
,
Distributed Piezoelectric-Polymer Active Vibration Control of a Cantilever Beam
,
J. of Guidance, Control, and Dynamics
, Vol.
8
, No.
5
, pp.
605
611
,
1986
.
9.
Choi
S. B.
, and
Lee
C. H.
,
Force Tracking Control of a Flexible Gripper Driven by Piezoceramic Actuator
,
JASME Trans. J. of Dynamic Systems, Measurement, and Control
, Vol.
119
, pp.
439
445
,
1997
.
10.
Baz
A.
, and
Poh
S.
,
Performance of an active control system with piezoelectric actuator
,
Journal of Sounds and Vibration
, Vol.
126
, No.
2
, pp.
327
343
,
1988
.
11.
Choi, S.B., Cheong, C.-C., and Lee, C.-H., Position tracking control of a smart flexible structure featuring a piezofilm actuator, Journal of Guidance, Control and Dynamics, Vol. 19, No 6, Nov–Dec, 1996.
12.
Yim
W.
, and
Singh
S. N.
,
Variable structure adaptive control of a cantilever beam using piezoelectric actuator
,
Journal of Vibration and Control
, Vol.
6
, pp.
1029
1043
,
2000
.
13.
Yim, W., Singh, S.N., and Trabia, M., Adaptive Control of Projectile Fin Angle Using Piezoelectric Beam Actuator, Proceedings of SPIE Smart Structures and Materials, March, 2004.
14.
Trabia, M., Yim, W., Fuzzy Logic Control of Projectile Fin Angle Using Piezoelectric Actuator, IMECE 2004.
15.
Hyland
D. C.
,
Junkins
J. L.
, and
Longman
R. W.
,
Active Control Technology for Space Structures
,
Journal of Guidance, Control and Dynamics
,
16
, pp.
801
821
,
1993
.
16.
Kaufmann, H., Barkana, I., Sobel, K., Direct Adaptive Control Algorithms, Springer-Verlag, New York, 1998.
17.
Mufti, I., H., Model Reference Adaptive Control for large structural systems, AIAA Journal of Guidance, Control and Dynamics, pp. 507–509, 1987.
18.
Annaswamy, A. M., and Clancy, D. J., Adaptive Control Strategies for Flexible Space Structures, IEEE Transactions on Aerospace and Electronic Systems, Vol. 32, No. 3, July 1996.
19.
Kelkar, A., and Joshi, S., Control of Nonlinear Multibody Flexible Space Structures, Springer, New York, 1996.
20.
Singh
S. N.
,
Zhang
R.
,
Adaptive Output Feedback Control of Spacecraft with Flexible Appendages by Modeling Error Compensation
,
Acta Astronautica
54
, pp.
229
243
,
2004
.
21.
Singh
S, N.
, and
Araujo
A. D. de
,
Adaptive Control and Stabilization of Elastic Spacecraft
,
IEEE Transactions on Aerospace and Electronic Systems
, Vol.
35
, pp.
115
122
, January
1999
.
22.
Singh
S. N.
,
Robust Nonlinear Attitude Control of Flexible Spacecraft
,
IEEE Transactions on Aerospace and Electronic Systems
, Vol.
AES-23
, No.
3
, pp.
380
387
, May
1987
.
23.
Mani, S., Singh, S. N., Parimi, S. K., Yim. W., Trabia, M., Adaptive Rotation of a Smart Projectile Fin by Piezoelectric Flexible Beam Actuator, To appear in Journal of Vibration and Control, 2005.
24.
Mani, S., Singh, S. N., Parimi, S. K., Yim. W., Trabia, M., Adaptive Control of a Projectile Fin using Piezoelectric Elastic Beam, To be presented at AIAA Guidance, Navigation and Control Conference and Exhibit, San Francisco, Aug 2005.
25.
Fradkov, A. L., Miroshnik, I. V., Nikiforov, V. O., Nonlinear and Adaptive Control of Complex Systems, Kluwer Academic Publishers, 1999.
26.
Vidyasagar, M., Nonlinear Systems Analysis, SIAM Publications, NJ, 2002.
27.
Narendra, K. S., Annaswamy, A. M., Stable Adaptive Systems, Prentice-Hall, NJ, 1989.
This content is only available via PDF.
You do not currently have access to this content.