This paper presents the development of carbon-nanotube-based, polymer composite films that can be used as high-sensitivity strain sensors. The films were fabricated via either melt processing or solution casting of thermoplastic polymer matrices containing low concentrations of multi-walled carbon nanotubes. The electrical resistivities of the films were measured in situ using laboratory-designed fixtures and data acquisition system. The measured resistivities were correlated with the applied strains to evaluate the sensitivity of the nanocomposite film sensor. Various types of loading mode, including tension and flexure were considered. The paper suggests that conductive network formation, thus strain sensitivity of the conductive films, can be tailored by controlling nanotube loading, degree of nanotube dispersion, and film fabrication process. The developed sensors exhibited a wide range of sensitivity, the upper limit showing nearly an order of magnitude increase compared to conventional strain gages. Military and industrial applications of the sensitivity-tunable strain sensors are presented.

1.
Li
Z.
,
Dharap
P.
,
Nagarajaiah
S.
,
Barrera
E. V.
, and
Kim
J. D.
,
2004
, “
Carbon Nanotube Film Sensors
,”
Advanced Materials
,
16
(
7
), pp.
640
643
.
2.
Frogley
M. D.
,
Zhao
Q.
,
Wagner
H. D.
,
2002
,
Phys. Rev. B
,
65
. p.
113413
113413
.
3.
Andrews
R.
,
Jacques
D.
,
Qian
D.
, and
Rantell
T.
,
2002
,
Acc. Chem. Res.
,
35
, p.
1008
1008
.
4.
Po¨tschke
P.
,
Bhattacharyya
A. R.
, and
Janke
A.
,
2004
,
Carbon
,
42
, p.
965
965
.
5.
Meincke
O.
,
Kaempfer
D.
,
Weickmann
H.
,
Friedrich
C.
,
Vathauer
M.
, and
Warth
H.
,
2004
,
Polymer
,
45
, p.
739
739
.
6.
Seo
M. K.
and
Park
S. J.
,
2004
Chem. Phys. Letters
,
395
, p.
44
44
.
7.
Sandler
J.
,
Shaffer
M. S. P.
,
Prasse
T.
,
Bauhofer
W.
,
Shulte
K.
, and
Windle
A. H.
,
1999
,
Polymer
,
40
, p.
5967
5967
.
8.
Kim
Y. J.
,
Shin
T. S.
,
Choi
H. D.
,
Kwon
J. H.
,
Chung
Y. C.
, and
Yoon
H. G.
,
2005
,
Carbon
,
43
, p.
23
23
.
9.
Kirkpatrick
S.
,
1957
,
Reviews of Modern Physics
,
45
, p.
574
574
.
10.
Zallen, R., 1998, The Physics of Amorphous Solids, John Wiley and Sons, New York.
11.
Shaffer
M. S. P.
,
Fan
X.
, and
Windle
A. H.
,
1998
,
Carbon
,
36
, p.
1603
1603
.
12.
Shueler
R.
,
Petermann
J.
,
Schule
K.
, and
Wentzel
H. P.
,
1997
,
Journal of Applied Polymer Science
,
63
, p.
1741
1741
.
13.
Park
J. M.
,
Kim
D. S.
,
Lee
J. R.
, and
Kim
T. W.
,
2003
,
Material Science and Engineering
,
23
, p.
971
971
.
14.
Baughman
R. H.
,
Zakhidov
A. A.
, and
de Heer
W. A.
,
2002
,
Science
,
297
, p.
792
792
.
15.
Ando
Y.
,
Zhao
X.
,
Shimoyama
H.
,
Sakai
G.
, and
Kaneto
K.
,
1999
,
International Journal of Inorganic Materials
,
1
, p.
77
77
.
16.
Haggenmueller
R.
,
Gommans
H. H.
,
Rinzler
A. G.
,
Fischer
J. E.
, and
Winey
K. I.
,
2000
,
Chem. Phys. Letters
,
330
, p.
219
219
.
17.
Caneba
G.
and
Axland
J.
,
2004
,
J. of Minerals and Materials Characterization and Engineering
,
3
, p.
73
73
.
18.
Paulson
S.
,
Falvo
M. R.
,
Snider
N.
,
Helser
A.
,
Hudson
T.
,
Seeger
A.
,
Taylor
R. M.
,
Superfine
R.
, and
Washburna
S.
,
1999
,
Applied Physics Letters
,
75
, p.
2936
2936
.
19.
Yang
L.
and
Han
J.
,
2000
,
Physical Review Letters
,
85
, p.
154
154
.
20.
eFunda: engineering fundamentals. 2005. 07 January 2005 http://www.efunda.com/designstandards/sensors/strain_ga ges/strain_gage_sensitivity.cfm.
21.
Dharap
P.
,
Li
A.
,
Nagarajaiah
S.
, and
Barrera
E.
,
2004
,
Nanotechnology Journal
,
15
, p.
379
379
.
22.
Kuzumaki
T.
and
Mitsuda
Y.
,
2004
,
Applied Physics Letters
,
85
, p.
1250
1250
.
This content is only available via PDF.
You do not currently have access to this content.