The prefrontal cortex (PFC) is critically involved in cognitive processes underlying working memory (WM), attention, and inhibition of responses to non-relevant stimuli (Fuster, 2000; Goldman-Rakic, 1996). In this context, catecholaminergic inputs have proven to be critical for the regulation of these cognitive processes (Levitt et al., 1984; Lewis et al., 1987; Lewis and Morrison, 1989; Porrino and Goldman-Rakic, 1982). Aston-Jones and Bloom (1981a, b) showed that, in addition to dopamine (DA) the norepinephrine (NE) neurons located in the locus coeruleus (LC) and terminating in the PFC are important in mediating selective and sustained attention and vigilance. Moreover, stimulation of the LC increases the discrimination of incoming external stimuli to the PFC by reducing the background noise, therefore enhancing the cortical signal-to-noise ratio (Aston-Jones et al., 1985; Berridge and Waterhouse, 2003; Foote et al., 1980, 1983; Waterhouse et al., 1980; Robbins, 2000). More recently, several studies have shown that adrenergic agonists, especially specific alpha-2 agonists, are very effective in enhancing WM and attention. Indeed, administration of alpha-2 agonists can ameliorate some of the negative effects on cognition produced by NE depletion due to aging in monkeys (Arnsten and Goldman-Rakic, 1985; Arnsten et al., 1988; Arnsten and Leslie, 1991) and improve performance in WM-related tasks in young monkeys with NE depletion (Arnsten and Goldman-Rakic, 1985; Cai et al., 1993). Moreover, the therapeutic effects of the specific alpha-2 agonists, clonidine and guanfacine in treating disorders related to dysfunction of WM in patients have been proved (Fields et al., 1988; Mair and McEntree 1986, 1988; Hunt et al., 1985, 1990, 1995).

1.
Andrews, H., and Lavin, A., Alpha2 noradrenergic agonist increases intrinsic excitability of prefrontal cortical pyramidal neurons in vitro. Poster at the Annual meeting of the Society for Neuroscience, 2004.
2.
Aoki
C
,
CG
G.
,
Venkatesan
C
,
Kurose
H.
,
Perikaryal and synaptic localization of alpha 2Aadrenergic receptor-like immunoreactivity
.
Brain Res
650
(
2)
:
181
204
,
1994
.
3.
Aradi
I.
,
Santhakumar
V.
,
Chen
K.
, and
Soltesz
I.
Postsynaptic effects of GABAergc synaptic diversity: regulation of neuronal excitability by changes in IPSC variance
.
Neuropharmacology
43
(
2002
)
511
522
.
4.
Aradi
I.
,
Santhakumar
V.
, and
Soltesz
I.
Impact of Heterogeneous Perisomatic IPSC Populations on Pyramidal Cell Firing Rates
.
J Neurophysiology
91
: (
2004
)
2849
2858
.
5.
Arnsten
AFT
,
Cai
JX
,
Goldman-Rakic
PS
.,
The alpha-2 adrenergic agonist guanfacine improves memory in aged monkeys without sedative or hypotensive side effects: Evidence for alpha -2 receptor subtypes
.
J Neurosci
8
:
4287
-
7
7,
1988
.
6.
Arnsten
A.
,
Steere
J. C.
,
Hunt
R. D.
The contribution of alpha sub 2-noradrenergic mechanisms to prefrontal cortical cognitive function: potential significance for attention-deficit hyperactivity disorder
.
Archives of General Psychiatry
, Vol.
54
, pp.
448
455
,
1996
.
7.
Arnsten
A.
Catecholamine modulation of prefrontal cortical cognitive function
.
Trends in Cognitive Sciences
, Vol.
2
, No.
11
, pp.
436
447
,
1998
.
8.
Berridge
C. W.
and
Waterhouse
B. D.
.
The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes
.
Brain Res Brain Res Rev
42
(
1)
:
33
84
.
2003
.
9.
Bower JM, Beeman D (2003) The book of GENESIS: Exploring realistic neural models with the GEneral NEural SImulation System, Internet Edition.
10.
Brown
A. M.
,
Schwindt
P. C.
, and
Crill
W. E.
Voltage dependence and activation kinetics of pharmacologically defined components of the high-threshold calcium current in rat neocortical neurons
.
J. Neurophysiol.
70
:
1530
1543
,
1993
.
11.
Nicolas
Brunel
and
Wang
X. J.
.
What determines the frequency of fast network oscillations with irregular neural discharges? I. synaptic dynamics and excitation-inhibition balance
.
J Neurophsiol.
90
:
415
430
,
2003
.
12.
Casey
B. J.
,
Castellanos
F. X.
,
Giedd
J. N.
Implication of right frontostriatal circuitry in response inhibition and attention-deficit/hyperactivity disorder
.
Journal of the American Academy of Child and Adolescent Psychiatry
, Vol.
36
, pp.
374
383
,
1997
.
13.
Castellanos
F. X.
Toward a pathophysiology of Attention Deficit/Hyperactivity Disorder
.
Clinical Pediatrics
, Vol.
36
, pp.
381
393
,
1997
.
14.
Chen
K
,
Aradi
I
,
Thon
N
,
Eghbal-Ahmadi
M
,
Baram
TZ
, and
Soltesz
I.
Pesitently modified h-channels after complex febrile seizures convert the seizure-induced enhancement of inhibition to hyperexcitability
.
Nat Med
7
:
331
337
,
2001
15.
Durstewitz
D.
,
Seamans
J. K.
, and
Sejnowski
T. J.
Dopamine-mediated stabilization of delay-period activity in a network model of prefrontal cortex
.
Journal of Neurophysiology
, Vol.
83
, pp.
1733
1750
,
2000
.
16.
Fritschy
J-M.
and
Brunig
I.
.
Formation and plasticity of GABAergic synapses: physiological mechanisms and pathophysiological implications
.
Pharmacology & Therpeutics
,
98
,
299
323
,
2003
.
17.
Goldman-Rakic
P. S.
Regional and cellular fractionation of working memory
.
Proceedings of the National Academy of Science USA
, Vol.
93
, pp.
1347
-
3
80,
1996
.
18.
Grabov
A.
and
Blatt
M. R.
.
A steep dependence of inward-rectifying potassium channels on cytosolic free calcium concentration increase evoked by hyperpolarization in guard cells
.
Plant Physiology
, Vol.
119
, pp.
277
287
,
1999
.
19.
Kang
Y.
,
Okada
T.
,
Ohmor
H.
,
A phenytoin-sensitive cationic current participates in gnerating afterdepolarization and burst afterdischarge in rat neocortical pyramidal cells
.
Eur. J. Neurosci.
10
1363
1375
,
1998
20.
Kawaguchi
Y.
Groupings of nonpyramidal and pyramidal cells with specific physiological and morphological characteristics in rat frontal cortex
.
J. Neurophysiol.
69
:
416
431
,
1993
.
21.
Kitano
K.
,
Cateau
H.
,
Kaneda
K.
,
Nambu
A.
,
Takada
M.
, and
Fukai
T.
.
Two-state membrane potential transitions of striatal spiny neurons as evidenced by numerical simulations and electrophysiological recordings in awake monkeys
.
J. Neurosci.
Vol.
22
.
RC230
RC230
,
2002
.
22.
Levy
F.
,
Farrow
M.
Working Memory in ADHD: Prefrontal/Parietal Connections
.
Current Drug Targets
, Vol.
2
, pp.
347
352
,
2001
.
23.
Levy
F.
,
Swanson
J. M.
Timing, space and ADHD: the dopamine theory revisited
.
Australian and New Zealand Journal of Psychiatry
, Vol.
35
, pp.
504
511
,
2001
.
24.
Niesenbaum
E. S.
and
Wilson
C. J.
.
Potassium currents responsible for inward and outward rectification in rat neostriatal spiny projection neurons
.
J. Neuroscience
,
15
(
6)
:
4449
4463
.
1995
.
25.
Wynn
P. H. T.
,
Yang
S. Y.
, and
Lin
S. K.
Neurochemical Interaction Between Dopaminergic and Noradarenergic Neurons in the Medial Prefrontal Cortex
.
Synaps.
Vol.
53
, pp.
44
52
,
2004
.
26.
Wang
X. J.
Calcium coding and adaptive temporal computation in cortical pyramidal neurons
.
J. Neurophysiol
79
:
1549
1566
,
1998
.
27.
Warman
E. N.
,
Durand
D. M.
, and
Yuen
G. L. F.
Reconstruction of hippocampal CA1 pyramidal cell electrophysiology by computer simulation
.
J. Neurophysiol.
71
:
2033
2045
,
1994
28.
Wilson
F. A. W.
,
Scalaidhe
S. P. O.
, and
Goldman-Rakic
P. S.
Functional synergism between pytative gama-aminobuttyrate-containing neurons and pyramidal neurons in prefrontal cortex
.
Proc. Natl. Acad. Sci. USA
91
:
4009
4013
,
1994
29.
Wolf
J. A.
,
Moyer
J. T.
,
Lazarewicz
M. T.
,
Contreras
D.
,
Benoit-Marand
M.
,
O’Donnell
P.
, and
Finkel
L. H.
.
NMDA/AMPA ratio impacts state transitions and entrainment to oscillations in a computational model of the nucleus accumbens medium spiny projection neuron
.
J. Neurosci.
25
(
40)
:
9080
9095
,
2005
.
30.
Wynn
P. H. T.
,
Yang
S. Y.
, and
Lin
S. K.
Neurochemical Interaction B etween Dopaminergic and Noradarenergic Neurons in the Medial Prefrontal Cortex
.”
Synapse
, Vol.
53
, pp.
44
52
,
2004
.
This content is only available via PDF.
You do not currently have access to this content.