Microstructures are exposed to a variety of liquid environments in applications such as biosensors, BioMEMS, and microfluidic devices. Environmental interactions between the liquids and microstructures can undermine the reliability of MEMS in liquid environments. In this paper, reliability of silicon microcantilevers is investigated in two common liquids, de-ionized water and saline solution, and contrasted with results in air. These single crystal silicon microcantilevers have a magnetic Permalloy tip and are magnetically actuated. The microcantilevers are subjected to long-term cyclic actuation (108-109 cycles) in a liquid filled enclosure. Reliability of the microcantilevers is evaluated by periodically monitoring changes in resonance frequency. The microcantilevers are subjected to peak stresses of ~5 MPa, which is typical for MEMS applications in liquids, e.g. AFM tips and biosensors. Since the tensile strength of silicon (1-3 GPa) is much higher than the applied stresses, structural fatigue failures were neither expected nor observed in air, water or saline. Changes in resonance frequencies of microcantilevers tested in air and water were insignificant to within the limits of experimental accuracy. However, environmental interactions influenced the reliability of microcantilevers tested in saline as indicated by a gradual decrease in resonance frequency. This decrease in resonance frequency is attributed to gradual mass adsorption of ionic species on the microcantilevers from the saline solution as indicated by scanning electron microscope imaging and electron dispersive spectroscopy.
Skip Nav Destination
ASME 2006 International Mechanical Engineering Congress and
Exposition
November 5–10, 2006
Chicago, Illinois, USA
Conference Sponsors:
- Microelectromechanical Systems Division
ISBN:
0-7918-4775-6
PROCEEDINGS PAPER
Reliability of Cyclically Actuated Silicon Microcantilevers in Liquid Environments
Susan C. Mantell,
Susan C. Mantell
University of Minnesota
Search for other works by this author on:
Ellen K. Longmire
Ellen K. Longmire
University of Minnesota
Search for other works by this author on:
S. Ali
University of Minnesota
Susan C. Mantell
University of Minnesota
Ellen K. Longmire
University of Minnesota
Paper No:
IMECE2006-16343, pp. 507-513; 7 pages
Published Online:
December 14, 2007
Citation
Ali, S, Mantell, SC, & Longmire, EK. "Reliability of Cyclically Actuated Silicon Microcantilevers in Liquid Environments." Proceedings of the ASME 2006 International Mechanical Engineering Congress and Exposition. Microelectromechanical Systems. Chicago, Illinois, USA. November 5–10, 2006. pp. 507-513. ASME. https://doi.org/10.1115/IMECE2006-16343
Download citation file:
6
Views
0
Citations
Related Proceedings Papers
Related Articles
Adhesin-Specific Nanomechanical Cantilever Biosensors for Detection of Microorganisms
J. Heat Transfer (January,2011)
Frequency Domain Identification of Tip-sample van der Waals Interactions in Resonant Atomic Force Microcantilevers
J. Vib. Acoust (July,2004)
Micro- and Sub-Micromachining of Type IIa Single Crystal Diamond Using a Ti:Sapphire Femtosecond Laser
J. Manuf. Sci. Eng (May,2002)
Related Chapters
The Tribological Character of LB Films of Dipalmitoylphosphatidylcholine (DPPC)
International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3
Insulating Properties of W-Doped Ga2O3 Films Grown on Si Substrate for Low-K Applications
International Conference on Advanced Computer Theory and Engineering, 4th (ICACTE 2011)
Validation of Elekta iViewGT A-Si EPID Model for Pre-Treatment Dose Verification of IMRT Fields
International Conference on Advanced Computer Theory and Engineering, 4th (ICACTE 2011)