The early-stage evolution of electrons emitted from a metal target surface during ultrashort laser ablation in vacuum has been studied using a physics-based model. This kind of research work has been rarely reported in literature. In the model, the target heat transfer process is simulated by solving the two-temperature heat transfer equations, based on which the photoemission and thermionic emission of electrons from the target surface are calculated. The early-stage evolution of emitted electrons is described by solving the electron mass, momentum, and energy conservation equations, coupled with the Poisson’s equation that governs the developed electric field. The study shows that a relatively very high free electron density can be developed near the target surface, and the front of emitted electrons propagates very fast into the vacuum. The developed electric field strongly affects the evolution of emitted electrons. Using the physics-based model, the temporal variation and the spatial distribution of the emitted electron number density, and velocity will be studied and discussed. The early-stage evolution of the emitted electrons may affect the possible subsequent hydrodynamic motion in the target, and the resulted plasma formation and material removal (laser ablation) processes. Therefore, this study provides very useful information for the understanding of ultrashort laser-material interaction, laser-induced plasma, laser ablation (machining), and other relevant processes.

This content is only available via PDF.
You do not currently have access to this content.