Methods are presented for self-alignment and assembly of objects with micron and nanometer-level features. The approach is a combination of kinematic coupling and elastic averaging in which mating alignment features spanning multiple length scales are successively brought into contact. When the objects are pressed together, the larger alignment features cause necessary deformation to ensure adequate alignment at the smaller length scales. Analytical and numerical modeling indicate that the largest alignment features can be designed to generally resolve global systematic errors while the smaller alignment features can correct local errors to achieve sub-micron alignment. Physical realization with ion beam etching, deposition, and thermal imprint lithography are also discussed.

This content is only available via PDF.
You do not currently have access to this content.