The Maisotsenko-process (M-process or M-cycle) is a complex process associated with humid air. Heat transfer and evaporative cooling occur in a unique indirect evaporative cooler resulting in product temperatures that approach the dew point temperature. This process utilizes the enthalpy difference between air at its dew point temperature, and air saturated at a higher temperature. This enthalpy difference is used to reject heat from the air stream with the high temperature. The different applications of the M-process contribute to effective energy savings. The M-process technology was realized initially in the year 1984. By enhancing cooling towers with the M-process it is possible to (a) cool water to dew point temperature; (b) reduce pressure drop and required fan power, and (c) modify existing cooling towers to substantially decrease cooled water temperature. An exergetic analysis identifies the real thermodynamic inefficiencies and the potential of improvement for the M-process. This paper demonstrates the detailed exergetic analysis of the M-process with separate consideration of the thermal and mechanical exergies (as two parts of the physical exergy) and the chemical exergy.

This content is only available via PDF.
You do not currently have access to this content.