Typically, active resonators for vibration suppression of flexible systems are uniaxial and can only affect structure response in the direction of the applied force. The application of piezoelectric bender actuators as active resonators may prove to be advantageous over typical, uniaxial actuators as they can dynamically apply both torque and translational force to the base structure attachment point; this minimizes the likelihood that the attachment location is the node of a mode (rotary or translational). In this paper, Hamilton’s Principle is used to develop the equations of motion for a continuous two-beam system composed of a cantilevered, primary base beam with a secondary piezoelectric bender mounted to its surface. A disturbance force is applied near the fixture location of the base beam and the system response is estimated using a sufficient quantity of assumed eigenfunctions that satisfy the geometric boundary conditions. A theoretical study is performed to compared the continuous system eigenfunctions to a finite element model (FEM) of the two-beam structure and the required number of eigenfunctions required to yield a convergent solution for an impulse excitation is explored. In addition, the frequency response function for the dynamic system is presented and compared to that of a FEM.
Skip Nav Destination
ASME 2014 International Mechanical Engineering Congress and Exposition
November 14–20, 2014
Montreal, Quebec, Canada
Conference Sponsors:
- ASME
ISBN:
978-0-7918-4648-3
PROCEEDINGS PAPER
Dynamic Modeling of a Piggybacked Cantilever Beam System
Troy Lundstrom,
Troy Lundstrom
Northeastern University, Boston, MA
Search for other works by this author on:
Nader Jalili
Nader Jalili
Northeastern University, Boston, MA
Search for other works by this author on:
Troy Lundstrom
Northeastern University, Boston, MA
Nader Jalili
Northeastern University, Boston, MA
Paper No:
IMECE2014-40247, V04BT04A079; 9 pages
Published Online:
March 13, 2015
Citation
Lundstrom, T, & Jalili, N. "Dynamic Modeling of a Piggybacked Cantilever Beam System." Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition. Volume 4B: Dynamics, Vibration, and Control. Montreal, Quebec, Canada. November 14–20, 2014. V04BT04A079. ASME. https://doi.org/10.1115/IMECE2014-40247
Download citation file:
9
Views
0
Citations
Related Proceedings Papers
Related Articles
Nonlinear Vibration of a Magneto-Elastic Cantilever Beam With Tip Mass
J. Vib. Acoust (April,2009)
An Augmented State Formulation for Modeling and Analysis of Multibody Distributed Dynamic Systems
J. Appl. Mech (May,2014)
Structural Dynamics in Machine-Tool Chatter: Contribution to Machine-Tool Chatter Research—2
J. Eng. Ind (November,1965)
Related Chapters
Dynamic Modeling of a New Snake Robot Using SMA Actuators
International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3
QP Based Encoder Feedback Control
Robot Manipulator Redundancy Resolution
Design of Space Net Capture System and Simulation
International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3