The synthesis and characterization of Polyaniline/Graphene/ Nanodiamond Nanocomposite is reported. The resulting materials were synthetized following a polymerization in situ scheme and characterized by Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetry (TGA), Differential Scanning Calorimetry (DSC), Scanning Electron Microscopy (SEM) and Cyclic Voltammetry (CV). The effect of different loads of graphene and nanodiamond on the resulting nanocomposite was studied. Despite the presence of the host materials, the formation of Polyaniline polymer is successfully accomplished for all samples. The microstructure of the resulting materials is core-shell type with the additives being covered (core) by layers of the conjugated polymer (shell). The thermal stability of the nanocomposites is improved as confirmed by measuring an increase on the Temperature of Decomposition and the Cross-Linking Temperature compared to bare polymer. Electrochemical characterization reveals that the presence of the additives does not affect the electroactive behaviour of the matrix polymer allowing it to reversely shift from different oxidation stages. The effect of additive content on the charge transfer kinetics is discussed.

This content is only available via PDF.
You do not currently have access to this content.