This paper addresses the potential of integrating Parabolic Trough Collectors (PTC) with a double-effect absorption chiller for the purpose of space cooling in residential buildings. The proposed model was designed such to provide a continuous cooling while in the absence of sun, the bio-mass heater was used as an auxiliary heating source. In this study, the thermal performance was investigated and a feasibility study was conducted in order to assess the system’s economic and environmental impacts. The obtained model was implemented on a case study represented by a four-floored residential building based in Dubai with a net cooling load requirement of 366 kW. The obtained results from the numerical simulation were analyzed to identify the optimum configuration in terms of feasibility and potential savings. It was found that a hybrid system with 40% solar contribution is the optimum solution compared to other alternatives. The proposed system achieved Annual Energy Consumption savings (AEC) of about 556061 kWh and a reduction by 69% in the annual operating costs. Moreover; the system reduced the Carbon-dioxide emissions by 344 tons/year. The payback period of the proposed system was found to be 2.42 years only.

This content is only available via PDF.
You do not currently have access to this content.