Abstract
An analytical approach to predict the cutting forces in end milling of magnesium metal matrix composite is presented in this study. The model was developed by identifying three events that occur when the cutting edge encounters the composite, when an element of the cutting edge encounters just the particles, it may fracture the particle, when the element encounters pure ductile matrix, plastic deformation occurs and when the element is in contact with both the particle and matrix, particle debonding occurs due to mismatch in coefficient of thermal expansion. The probability of these events was estimated using the particle concentration and the distribution in the matrix. A cutting force model is developed by considering the stresses and forces experienced by the cutting edge contributed by these events. The predicted feed forces and the measured forces are in good agreement for most of the cutting conditions. While, the predictive thrust forces were found to diverge at higher feed of 1 mm/rev.