Abstract
Digital evaluation of touch-feel in textiles is useful to design fundamental functions of clothing. Here, it is necessary to design textiles for a detailed evaluation of the sensitivity in human’s feelings to consider the life-style creation in various aspects. Then, the objective of this paper is to propose a design method for plain-woven fabrics by touch-feel estimation considering the weaving process with the constitutive relations of yarn. Here, a diagram for control weaving is defined by the diameter of the yarn and displacement quantity of the weaving and the cramping by defining the theoretical thickness. For the effective design to consider various processes, unit-cell of plain-woven structures are fundamentally classified as open set models and closed set models. One of the unit-cell models in the finite element method (FEM) for the plain-woven structure is adopted because the adopted model can consider initial-stress distribution in the weaving process. For touch-feel estimation, an analysis model is constructed by warp, weft, and plungers that cramps the woven structure. A series of diagrams to compress with plungers is shown after constructing a plain-woven structure. As for analyzing the weaving process and the touch-feel estimation in one model, realization of the effective engineering is enabled. This procedure yields that the relationship between the displacement and simulation time suggests for consideration of initial-stress.