In order to increase the areal recording density of hard disk drive beyond 1 Tb/in2, the flying height has to be reduced to several nanometers. At such a low flying height, particles and lube contaminations, which could lead to a transient vibration and flying height modulation in a hard disk drive, are becoming more and more serious. In this work, it studies the influence of temperature and humidity on the air flow pattern, velocity and shear stress distribution on the air bearing surface (ABS) of slider using a self-developed simulator. It first solves the generalized steady state Reynolds equation with slip boundary conditions. Then it solves the reduced Navier-Stokes (N-S) equation with slip boundary conditions to get the air velocity distribution, i.e., identify the air flow pattern on the ABS. The stagnation lines and areas of air flow are calculated to judge the contamination area. On the other hand, it calculates the air shear stress distribution on the ABS since the air shear stress is the main driving force for the lubricant and particles migration and contaminations. After that, the impact of the temperature and humidity on the air flow pattern is analyzed by applying the Sutherland equation and mixed gas viscosity calculation equation.

The simulation results indicate that the impact of temperature and humidity on the air flow pattern is un-conspicuous. However, the peak velocity of the air flow, which contains no vapor, reduces almost 10%, and the peak air flow shear stress increases less than 1.5%, with the increase of operational temperature from 298.15 K to 343.15 K. In addition, the peak velocity of the air flow increasing almost 4%, and the peak air flow shear stress keeps almost same, with the increase of the operational mole fraction of vapor from 5% to 15%.

This content is only available via PDF.
You do not currently have access to this content.