In this study, synthesized Wurtzite-structured ZnS nanobelts was investigated using high resolution transmission electron microscope, atomic force microscope, and scanning electron microscope for structural and morphology analyses. Results show that ZnS nanobelts are tens of microns in length, mostly ∼40×50 nm2 in width and thickness. The nanobelts grow along direction [001] and are dislocation free. The distance spacing for (001) plane is 3.19A˚. The capillary force was found strong enough to deform the ZnS nanobeam down to the substrate. Theoretical analysis on small strain elastic deformation was conducted. It was found that as the maximum beam deflection increases, beam elastic energy increases; in the meantime, the surface energy decreases. The net increase in elastic beam energy is less than the net decrease in the surface energy, resulting in total energy decrease. In addition, as the volume of liquid increases, for a certain maximum beam deflection, the total energy increases, this is result of the increase of the surface energy. Furthermore, for a specific nanobeam to be deflected to the underlying surface, the amount of liquid can be calculated.

This content is only available via PDF.
You do not currently have access to this content.