Flow stress in the high speed machining of titanium alloys depends strongly on the microstructural state of the material which is defined by the composition of the material, its starting microstructure and the thermo-mechanical loads imposed during the machining process. Previous researchers have determined the flow stress empirically as a function of mechanical state parameters such as strain, strain rate and temperature while ignoring the changes in the microstructural state such as alpha-beta phase transformations. This paper presents a new microstructure sensitive flow stress model based on the self-consistent method (SCM) that includes the effects of chemical composition, α phase and β phase, as well mechanical state imposed. This flow stress is developed to model the flow behavior of titanium alloys in machining, at speed of higher than 5m/s, characterized by extremely high strains (2∼10 or higher), high strain rates (104∼106s−1 or higher) and high temperatures (600∼1300°C). The flow stress sensitivity to mechanical and material parameters is analyzed. A new SCM-based Johnson-Cook (JC) flow stress model is proposed whose constants and ranges are determined using experimental data and the physical basis for SCM approach from literature. This new flow stress is successfully implemented in the finite element framework to simulate high speed machining process and compared with other types of flow stress models in terms of chip morphology. The predicted results confirm that the new model is much more effective and reliable than the original JC model in predicting chip segmentation in the high speed machining of titanium Ti-6Al-4V alloy.
Skip Nav Destination
ASME 2016 11th International Manufacturing Science and Engineering Conference
June 27–July 1, 2016
Blacksburg, Virginia, USA
Conference Sponsors:
- Manufacturing Engineering Division
ISBN:
978-0-7918-4989-7
PROCEEDINGS PAPER
Microstructure Sensitive Flow Stress Based on Self Consistent Method
Xueping Zhang,
Xueping Zhang
Shanghai Jiao Tong University, Shanghai, China
Search for other works by this author on:
Rajiv Shivpuri,
Rajiv Shivpuri
The Ohio State University, Columbus, OH
Search for other works by this author on:
Anil K. Srivastava
Anil K. Srivastava
The University of Texas Rio Grande Valley, Edinburg, TX
Search for other works by this author on:
Xueping Zhang
Shanghai Jiao Tong University, Shanghai, China
Rajiv Shivpuri
The Ohio State University, Columbus, OH
Anil K. Srivastava
The University of Texas Rio Grande Valley, Edinburg, TX
Paper No:
MSEC2016-8708, V001T02A043; 16 pages
Published Online:
September 27, 2016
Citation
Zhang, X, Shivpuri, R, & Srivastava, AK. "Microstructure Sensitive Flow Stress Based on Self Consistent Method." Proceedings of the ASME 2016 11th International Manufacturing Science and Engineering Conference. Volume 1: Processing. Blacksburg, Virginia, USA. June 27–July 1, 2016. V001T02A043. ASME. https://doi.org/10.1115/MSEC2016-8708
Download citation file:
14
Views
0
Citations
Related Proceedings Papers
The Genesis of Tool Wear in Machining
IMECE2015
Related Articles
Chip Fracture Behavior in the High Speed Machining of Titanium Alloys
J. Manuf. Sci. Eng (August,2016)
A Modified Johnson–Cook Constitutive Model and Its Application to High Speed Machining of 7050-T7451 Aluminum Alloy
J. Manuf. Sci. Eng (January,2019)
Titanium Drilling Risers—Application and Qualification
J. Offshore Mech. Arct. Eng (February,2000)
Related Chapters
On the Evaluation of Thermal and Mechanical Factors in Low-Speed Sliding
Tribology of Mechanical Systems: A Guide to Present and Future Technologies
Section III: Subsections NC and ND — Class 2 and 3 Components
Companion Guide to the ASME Boiler and Pressure Vessel Code, Volume 1, Fourth Edition
Preparation of TiC Nanopowder by Mechanical Alloying Process
International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3