This paper describes implementation and application of nonlinear lateral soil models for pipeline lateral buckling analysis. Several lateral soil models have been developed in the past and the model developed by Verley is often referenced in pipeline on-bottom hydrodynamic stability analyses (see [11], [13]). The Verley’s model includes the build up of soil passive resistance as a function of small cyclic lateral motions and it is implemented in the PONDUS software (developed by MARINTEK) for on-bottom stability analysis as well as the DNV-RP-F109. However, the Verley model does not include the build up of additional soil berm resistance due to large cyclic in-place lateral motions applicable for lateral thermal buckling behaviors. The effect of additional soil berm resistance from large cyclic motions has been investigated by other research projects, such as the SAFEBUCK JIP [5]. In this paper, a complete non-linear lateral soil models with inherent soil berm resistance including both effects are formulated. The soil model combines the Verley model, the models described in DNV-RP-F109, and the berm model from SAFEBUCK’s results. The DNV and Verley’s model are used to model soil resistance in small amplitude cycle continued by the berm model after breakout achieved during large amplitude cycle. The new model is compared with PONDUS to validate the results of Verley and DNV model. The soil model is implemented inside SIMLA software [15] to enable finite element analysis. An example application of the model to pipeline global buckling analysis is then presented.
Skip Nav Destination
ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering
June 19–24, 2016
Busan, South Korea
Conference Sponsors:
- Ocean, Offshore and Arctic Engineering Division
ISBN:
978-0-7918-4996-5
PROCEEDINGS PAPER
Non-Linear Clay Soil Model for Lateral Pipe-Soil Interaction
Arifian Agusta,
Arifian Agusta
University of Pertamina, Jakarta, Indonesia
Search for other works by this author on:
Svein Sævik
Svein Sævik
Norwegian University of Science and Technology, Trondheim, Norway
Search for other works by this author on:
Arifian Agusta
University of Pertamina, Jakarta, Indonesia
Guomin Ji
MARINTEK, Trondheim, Norway
Svein Sævik
Norwegian University of Science and Technology, Trondheim, Norway
Paper No:
OMAE2016-54658, V005T04A038; 9 pages
Published Online:
October 18, 2016
Citation
Agusta, A, Ji, G, & Sævik, S. "Non-Linear Clay Soil Model for Lateral Pipe-Soil Interaction." Proceedings of the ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering. Volume 5: Pipelines, Risers, and Subsea Systems. Busan, South Korea. June 19–24, 2016. V005T04A038. ASME. https://doi.org/10.1115/OMAE2016-54658
Download citation file:
13
Views
0
Citations
Related Proceedings Papers
Related Articles
Stability of Vertically Bent Pipelines Buried in Sand
J. Pressure Vessel Technol (August,2004)
Cover Requirement and Stability of Horizontally Bent Buried Pipelines
J. Pressure Vessel Technol (April,2012)
Effect of Transitions in the Water Table and Soil Moisture Content on the Cathodic Protection of Buried Pipelines
J. Pressure Vessel Technol (February,2011)
Related Chapters
DYNAMIC GEOHAZARD MANAGEMENT IN CHALLENGING ENVIRONMENT
Pipeline Integrity Management Under Geohazard Conditions (PIMG)
LARGE STANDOFF MAGNETOMETRY TECHNOLOGY ADVANCES TO ASSESS PIPELINE INTEGRITY UNDER GEOHAZARD CONDITIONS AND APPROACHES TO UTILISATION OF IT
Pipeline Integrity Management Under Geohazard Conditions (PIMG)
Geohazard Assessment and Management - Assessment Principles and Techniques
Pipeline Geohazards: Planning, Design, Construction and Operations