A lot has been researched recently in order to enable economically feasible use of offshore wind energy. Although these figures have been falling, offshore wind energy generation has in average still much higher costs associated with the inherent drawbacks of installing and operating assets at the sea’s hostile environment. As much of these costs are related to unplanned maintenance tasks, one promising approach to make wind energy more competitive is to optimize the resources involved in it. This paper was developed with the purpose of analyzing the viability of an algorithm that offers valuable information when defining a maintenance strategy for the operation of an offshore wind farm, aiming at the availability and the expected profit optimization, with a different approach than usual. Initially, an algorithm to conduct a reliability, availability and maintainability (RAM) analysis was created based on a Monte Carlo Simulation (MCS). Given a simplified wind farm model, as well as its components’ failure data and configuration, it is possible to obtain its availability and energy production costs. The algorithm was validated by comparing known failure data with the stochastically obtained after running the algorithm. A case study was defined based on extensive literature research and the simulation was executed considering restrictions typically found in modern wind farms. A sensitivity analysis was conducted in order to understand how each model’s parameter affects the energy production costs. Given this analysis, it was possible to determine the most relevant optimization variables when creating a maintenance strategy. Following, an algorithm for optimizing those parameters is presented.
Skip Nav Destination
ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering
June 25–30, 2017
Trondheim, Norway
Conference Sponsors:
- Ocean, Offshore and Arctic Engineering Division
ISBN:
978-0-7918-5766-3
PROCEEDINGS PAPER
Identification and Optimization of Most Relevant Variables When Creating a Maintenance Strategy of an Offshore Wind Farm
Ana Beatriz Gomes Zanforlin,
Ana Beatriz Gomes Zanforlin
University of São Paulo, São Paulo, Brazil
Search for other works by this author on:
Adriana Miralles Schleder,
Adriana Miralles Schleder
University of São Paulo, São Paulo, Brazil
Search for other works by this author on:
Marcelo Ramos Martins
Marcelo Ramos Martins
University of São Paulo, São Paulo, Brazil
Search for other works by this author on:
Ana Beatriz Gomes Zanforlin
University of São Paulo, São Paulo, Brazil
Adriana Miralles Schleder
University of São Paulo, São Paulo, Brazil
Marcelo Ramos Martins
University of São Paulo, São Paulo, Brazil
Paper No:
OMAE2017-61776, V03BT02A021; 8 pages
Published Online:
September 25, 2017
Citation
Zanforlin, ABG, Schleder, AM, & Martins, MR. "Identification and Optimization of Most Relevant Variables When Creating a Maintenance Strategy of an Offshore Wind Farm." Proceedings of the ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering. Volume 3B: Structures, Safety and Reliability. Trondheim, Norway. June 25–30, 2017. V03BT02A021. ASME. https://doi.org/10.1115/OMAE2017-61776
Download citation file:
13
Views
0
Citations
Related Articles
Optimizing the Cost and Reliability of Shared Anchors in an Array of Floating Offshore Wind Turbines
ASME J. Risk Uncertainty Part B (December,2021)
Availability Analysis of a Steam Boiler in Textile Process Industries Using Failure and Repair Data: A Case Study
ASME J. Risk Uncertainty Part B (June,2021)
Wind Energy Potential in Jordan: Analysis of the First Large-Scale Wind Farm and Techno-Economic Assessment of Potential Farms
J. Sol. Energy Eng (February,2021)
Related Chapters
An Efficient Approach to Power Coefficient and Tip Speed Ratio Relationship Modeling in Maximum Power Point Tracking of Wind Power Generation
International Conference on Software Technology and Engineering (ICSTE 2012)
Expert Systems in Condition Monitoring
Tribology of Mechanical Systems: A Guide to Present and Future Technologies
Role of Wind Energy Technology in India and Neighboring Countries
Wind Energy Applications