With the increasing demand for marine structures, including ships and wave energy devices, to operate in energetic, high seastates, the need for modeling and simulation of nonlinear ocean wave fields in large-scale wave basins is becoming essential. In response to this demand, a number of large-scale wave basins have been placed into operation over the years and larger and more sophisticated new ones are under planning and construction. In this article, the current state of practice and technical issues in modeling and simulation of high seastate ocean waves are summarized. A novel methodology for quantitative evaluation of the suitability of competing linear and nonlinear wave theories for a given wave field with multi-spatial measurements is presented. Preliminary results of an on-going study on wave modeling and analysis of measured data from a wave simulation performance study of the Oregon State University directional wave basin, using nonlinear wave theory (e.g. the nonlinear Schrödinger equation), nonlinear Fourier analysis and inference to the existence of rogue waves, are presented. Suggestions on future development of nonlinear wavemaker theories and numerical modeling and simulation of large-scale wave basin nonlinear wave generation are proposed. The article concludes with some observations and remarks on the importance of using an appropriate wave theory to determine the existence of nonlinear coherence structures, including breathers and rogue waves.
Skip Nav Destination
ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering
June 25–30, 2017
Trondheim, Norway
Conference Sponsors:
- Ocean, Offshore and Arctic Engineering Division
ISBN:
978-0-7918-5774-8
PROCEEDINGS PAPER
Nonlinear Ocean Wave Models and Laboratory Simulation of High Seastates and Rogue Waves
Solomon C. Yim,
Solomon C. Yim
Oregon State University, Corvallis, OR
Search for other works by this author on:
Alfred R. Osborne,
Alfred R. Osborne
Nonlinear Waves Research Corporation, Alexandria, VA
Search for other works by this author on:
Ali Mohtat
Ali Mohtat
Oregon State University, Corvallis, OR
Search for other works by this author on:
Solomon C. Yim
Oregon State University, Corvallis, OR
Alfred R. Osborne
Nonlinear Waves Research Corporation, Alexandria, VA
Ali Mohtat
Oregon State University, Corvallis, OR
Paper No:
OMAE2017-62706, V07BT06A056; 16 pages
Published Online:
September 25, 2017
Citation
Yim, SC, Osborne, AR, & Mohtat, A. "Nonlinear Ocean Wave Models and Laboratory Simulation of High Seastates and Rogue Waves." Proceedings of the ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering. Volume 7B: Ocean Engineering. Trondheim, Norway. June 25–30, 2017. V07BT06A056. ASME. https://doi.org/10.1115/OMAE2017-62706
Download citation file:
35
Views
0
Citations
Related Proceedings Papers
Related Articles
JOMAE Special Issue on Ocean Engineering
J. Offshore Mech. Arct. Eng (February,2003)
Reflection and Transmission of Ship Waves by Floating Barriers
J. Offshore Mech. Arct. Eng (February,2003)
The Motion of Floating Systems: Nonlinear Dynamics in Periodic and Random Waves
J. Offshore Mech. Arct. Eng (November,2009)
Related Chapters
Modeling and Simulation of Coal Gas Concentration Prediction Based on the BP Neural Network
International Symposium on Information Engineering and Electronic Commerce, 3rd (IEEC 2011)
Information Technology in Operation Analysis
International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3
Application of MIKE21-BW Model in the General Arrangement of a Fish Porjt
International Conference on Advanced Computer Theory and Engineering, 4th (ICACTE 2011)