Drilling fluids are visco-elastic materials, i.e. they behave as a viscous fluid when subject to a sufficient shear stress and like an elastic solid otherwise. Both their elastic and viscous properties are time-dependent, i.e. drilling fluids are thixotropic. Because of thixotropy, it takes a finite time before the effective viscosity of a drilling fluid attains an equilibrium when the fluid is subject to a change of shear rate. This effect is visible when one changes the applied shear rate in a rheometer, as the fluid will gradually adapt to the new shearing conditions.

When the velocity of a drilling fluid changes, for instance due to a change in pump flow rate, movement of the drill string, or change of flow geometry, the fluid will exhibit a time-dependent response to the new shearing conditions, requiring a certain time to reach the new equilibrium condition.

Unfortunately, the time-dependence of the rheological properties of drilling fluids are usually not measured during drilling operations and therefore it is difficult to estimate how thixotropy impacts pressure losses in drilling operations. For that reason, we have systematically measured the time-dependence of the rheological properties of several samples of water-based, oil-based and micronized drilling fluids with a scientific rheometer in order to capture how drilling fluids systems respond to variations of shear rates.

Based on these measurements, we propose to investigate how one existing thixotropic model manages to predict the shear stress as a function of the shear rate while accounting for the shear history and gelling conditions. Then we propose a modified model that fits better, overall, with the measurements even though there are still noticeable discrepancies, especially when switching back to low shear rates.

This content is only available via PDF.
You do not currently have access to this content.