Abstract

The onshore pre-fabrication technology for composite bucket foundations takes “prefabrication-assembly-lifting” as the core concept. The practice of pre-fabrication of upper and lower structures is prefabricated respectively. In the research of hoisting engineering technology, combined with the structural form and construction requirements of composite bucket foundation, the assembly scheme of the upper prestressed concrete transition section and the lower steel bucket and the hoisting scheme of integral foundation with compartments were designed. The finite element model in the lifting process of composite bucket foundation was established by the large-scale general finite element analysis software ABAQUS. For the optimization analysis of the lifting point arrangement during hoisting process, the number, position and arrangement form of lifting points are simulated and analyzed. The results show that the maximum value of the principal stress of the concrete transition section structure appears in the assembly stage with the lower steel bucket, and the structure checking calculation should be carried out as the most unfavorable lifting condition in construction; the peak point of structural stress is at the junction of girder and secondary beams and inner ring beams of concrete roof, which belongs to the weak position of force transmission. In construction, it should be paid attention to as the key part of monitoring to ensure composite bucket foundation is under reasonable stress and the stability in the lifting process. The research results can provide guidance and reference for the future batch production and standardization production construction for composite bucket foundations.

This content is only available via PDF.
You do not currently have access to this content.