Abstract

As the regulations on greenhouse gas emissions at sea become strict, technology development to minimize environmental pollutants emitted from the propulsion system of ships is actively underway. Research on the use of renewable energy as a power source of ships propulsion system pursuing eco-friendliness is continuously carried out. However, considering the recent development of ships’ large-scale, and at the same time minimizing greenhouse gas emissions at sea, the interest in nuclear energy as the means of a stable supply of environmentally friendly large-capacity energy has been increased. In this study, the effect of marine reactor operation on the material properties of a ship hull material is reviewed, and from this, hull structural behaviors are investigated. Attention is paid to the neutron irradiation on the material in the reactor operation environment, and then the strength assessment of a hull structural member assumed in the neutron irradiation situation is performed. Considering the neutron irradiation effects, the Young’s modulus, poisson’s ratio and allowable stress of DH36, typical high tensile strength steel used in ship hull, are varied based on the research findings related with the topic of neutron irradiated steels. Rectangular stiffened plated structures, basic common structural members for ship hull, are exemplified for the strength assessment to understand their structural behaviors such as strength and stiffness. Results from this study provide information on the effect of neutron irradiation on the hull structural behaviors of the ship using nuclear power and possibly can supplement the hull structure part from classification societies’ rules and regulations.

This content is only available via PDF.
You do not currently have access to this content.