Estimates for roll damping are important input parameters for simulation studies on vessels operating at sea, e.g. FPSO mooring in waves, wind and current, workability and operability investigations, Dynamic Position studies, ship-to-ship operations and safety studies of vessels. To accurately predict the motions of vessels this quantity should be determined with confidence in the values. Traditionally, model experiments in water basins using so-called decay tests are carried out to determine the roll damping. With recent advancements in CFD modelling, the offshore industry has started using CFD as an alternative tool to compute the roll damping of FPSO’s. In order to help adopt CFD as a widely accepted tool, there is a need to develop confidence in CFD predictions. Therefore, a practical CFD modelling practice is developed within the Reproducible CFD JIP for roll decay CFD simulations. The Modelling Practice describes the geometry modelling, computational mesh, model set-up and post-processing for these type of CFD calculations. This modelling practice is verified and validated by three independent verifiers against available model test data.

This paper provides an overview of the developed modelling practice and the calculated CFD results from the verifiers. The CFD modelling practice is benchmarked against available model test results for a tanker-shaped FPSO. By following this modelling practice, the CFD predictions for the equivalent linear damping coefficient and natural period of the roll motions are within 10% for all verifiers and within 10% from the model test results. Therefore, we conclude that when following the developed modelling practice for roll decay simulations, reliable, accurate and reproducible results can be obtained for the roll damping of tanker-shaped FPSOs.

This content is only available via PDF.
You do not currently have access to this content.