Due to the peculiar physical properties, supercritical carbon dioxide (sCO2) is considered as a promising working fluid in power generation cycles with high reliability, simple structure and great efficiency. Compared with the general thermal systems, the variable properties of sCO2 make the system models obtained by the traditional modelling method more complex. Besides, the pressure distribution in the system will affect the distribution of the fluid properties, the fluid properties influencing the heat transfer process will produce an impact on the temperature distribution which will in turn affect the pressure distribution through the mass flow characteristics of all components. This contribution introduces the entransy-based power flow method to analyze and optimize a recompression sCO2 power generation system under specific boundary conditions. About the heat exchanger, by subdividing the heat transfer area into several segment, the fluid properties in each segment are considered constant. Combining the entransy dissipation thermal resistance of each segment and the energy conservation of each fluid in each segment offers the governing equations for the whole heat transfer process without any intermediate segment temperatures, based on which the power flow diagram of the overall heat transfer process is constructed. Meanwhile, the pressure drops are constrained by the mass flow characteristics of each component, and the inlet and outlet temperatures of compressors and turbines are constrained by the isentropic process constraints and the isentropic efficiencies. Combining the governing equations for the heat exchangers and the constraints for turbine and the compressors, the whole system is modeled by sequential modular method. Based on this newly developed model, applying the genetic algorithm offers the maximum thermal efficiency of the system and the corresponding optimal operating variables, such as the mass flow rate of the working fluid in the cycle, the heat capacity rate of the cold source and the recompression mass fraction under the given heat source. Furthermore, the optimization of the system under different boundary conditions is conducted to study its influence on the optimal mass flow rate of the working fluid, the heat capacity of the cold source and the maximum system thermal efficiency. The results proposes some useful design suggestions to get better performance of the recompression supercritical carbon dioxide power generation system.
Skip Nav Destination
ASME 2018 Power Conference collocated with the ASME 2018 12th International Conference on Energy Sustainability and the ASME 2018 Nuclear Forum
June 24–28, 2018
Lake Buena Vista, Florida, USA
Conference Sponsors:
- Power Division
- Advanced Energy Systems Division
- Solar Energy Division
- Nuclear Engineering Division
ISBN:
978-0-7918-5140-1
PROCEEDINGS PAPER
Analysis and Operation Optimization of Recompression Supercritical Carbon Dioxide Power Generation System Based on the Power Flow Method
Xia Li
Tsinghua University, Beijing, China
Qun Chen
Tsinghua University, Beijing, China
Xi Chen
Tsinghua University, Beijing, China
Paper No:
POWER2018-7522, V002T09A012; 9 pages
Published Online:
October 4, 2018
Citation
Li, X, Chen, Q, & Chen, X. "Analysis and Operation Optimization of Recompression Supercritical Carbon Dioxide Power Generation System Based on the Power Flow Method." Proceedings of the ASME 2018 Power Conference collocated with the ASME 2018 12th International Conference on Energy Sustainability and the ASME 2018 Nuclear Forum. Volume 2: Heat Exchanger Technologies; Plant Performance; Thermal Hydraulics and Computational Fluid Dynamics; Water Management for Power Systems; Student Competition. Lake Buena Vista, Florida, USA. June 24–28, 2018. V002T09A012. ASME. https://doi.org/10.1115/POWER2018-7522
Download citation file:
24
Views
0
Citations
Related Proceedings Papers
Related Articles
Heat Exchanger Design Considerations for Gas Turbine HTGR Power Plant
J. Eng. Power (April,1977)
Mass Optimization of a Supercritical CO 2 Brayton Cycle Power Conversion System for a Mars Surface Fission Power Reactor
ASME J of Nuclear Rad Sci (July,2017)
Development of a Solar Receiver Based on Compact Heat Exchanger Technology for Supercritical Carbon Dioxide Power Cycles
J. Sol. Energy Eng (June,2015)
Related Chapters
Thermodynamic Performance
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Summary
Heat Transfer & Hydraulic Resistance at Supercritical Pressures in Power Engineering Applications
Performance Testing of Combined Cycle Power Plant
Handbook for Cogeneration and Combined Cycle Power Plants, Second Edition