The paper presents the results of a numerical investigation of the transverse Vortex-Induced Vibrations of an undamped, low mass ratio elastically supported circular cylinder that was subjected to a uniform flow that resulted in a Reynolds number of 104. The numerical simulations were performed using a two-dimensional Large Eddy Simulation model. The computed cylinder response exhibits three branches; the initial, upper and lower branches. The computed initial and lower branches, which exhibit 2S and 2P modes of shedding respectively, show many similarities to those reported from experiments. However, the computed upper branch, on which a maximum amplitude of response of 0.83D was achieved, shows some dissimilarities to those reported from experiments. The failure to correctly simulate the upper branch response is thought to be due to the high degree of flow three-dimensionality that has been reported to exist on the upper branch.

This content is only available via PDF.
You do not currently have access to this content.