Threaded couplings are used in various applications to connect steel pipes. To maintain a secure connection, such couplings are preloaded and during service additional dynamic loads can act on the connections. The coupling’s threads act as stress raisers, initiating fatigue cracks, which can cause the connection to fail in time. Accurate knowledge of the fatigue behavior, taking into account crack initiation and propagation is necessary to understand the fatigue mechanisms involved. In this study, the fatigue behavior of tapered couplings with NPT threads is studied. This is done by analyzing the results of an experimental four-point bending test. The fatigue crack propagation is monitored using an optical dynamic 3D displacement measurement device and LVDTs to measure the crack opening. At certain times during the test, the load ratio is changed to apply a number of beach marking cycles. This way a fine line is marked in the fracture surface. These marked crack shapes are used as input for a finite element model. The measured deflection and crack opening are compared to the results of the numerical simulations. Using this methodology a distinction is made between fatigue crack initiation and propagation. By analyzing the fracture surface it was observed that once the crack is initiated, it propagates over a wide segment of the pipe’s circumference and subsequently rapidly penetrates the wall of the pipe. The observed crack growth rates are confirmed by a fracture mechanics analysis. Since the appearing long shallow crack is difficult to detect at an early stage the importance is demonstrated of accurate knowledge of the fatigue behavior of threaded connections in order to define acceptable flaw sizes and inspection intervals.

This content is only available via PDF.
You do not currently have access to this content.