According to the principle of magnetic flux leakage testing and the finite element numerical simulation, 3D finite element model (FEM) for MFL testing of tank bottom was established. Through simulative analysis, influence law between defect size and defect magnetic flux leakage field and the relationship curve of defect leakage magnetic field change with its size was obtained. The result showed that: When the length vary with sequence, the peak valley length of defects leakage magnetic signal increase with the increase of defect length, the relationship curve between each other is approximate linear; When the depth vary with sequence, the relationship between peak valley height of defects leakage magnetic signal and defect depth is also approximate linear, but this relationship was different with different length; When the width vary with sequence, on the defect symmetry plane, the peak of magnetic flux density along the width direction corresponded with the defect edge, and the length of the two peaks were equal to the width of the defect. According to simulation data and theory of regression analysis linear regression equation and relation surface between defect length depth and the characteristic quantity of its signal was established, quantitative method of defects signal was also proposed. Then experimental study was carried out in the Laboratory, the result show that the quantitative size was consistent with the actual defect size.

This content is only available via PDF.
You do not currently have access to this content.