Primary loop recirculation (PLR) piping weld joints are more susceptible to stress corrosion cracking (SCC). But it is difficult to accurately predict SCC growth rate in PLR piping weld joints because the material and mechanical properties in weld joints are quite complicated. Especially, it is provided that hardening in the weld heat-affected zone (HAZ) might play an important role in promoting SCC growth. Considering welded mechanical heterogeneity, the local stress and plastic strain fields ahead of growing crack tip in 316L PLR piping weld joints are analyzed, the effect of constant stress intensity factor (KI) and constant loading on SCC behaviors of PLR piping weld joints is investigated in this study. The results show that the mechanical fields of SCC tips behave quite differently under constant KI and constant loading because of welded mechanical heterogeneity and advanced crack length, which demonstrate that the effect of constant loading on the stress and strain ahead of the growing crack tip is bigger than that of constant KI.

This content is only available via PDF.
You do not currently have access to this content.