Filler material used for welding operations can lead to the occlusion of hydrogen gas in the arc atmosphere into the solidifying weld metal. This amount of hydrogen as well as the one originally present in the parent metal rapidly diffuses into the various regions of the weldment due to the high temperature depending also on the microstructure evolution and trapping effects. As the welded component cools down, depending on the metal’s microstructure in the heat-affected zone, the concentration of hydrogen in weld and the level of residual stresses, the risk of hydrogen assisted cold cracking in ferritic steel can arise. One of the most effective precautions against weld hydrogen cracking is to use of preheating and post-heating in order to reduce the hydrogen content, by diffusion in the structure and degassing, when residual stresses reach higher values at the end of cooling. The implant test is a stress controlled test applied on small specimen during welding to assess the susceptibility to heat affected zone hydrogen cracking. It may be used to define preheating temperature and postheating duration in order to prevent nuclear component assemblies from cold cracking risk. This paper will first present how to couple hydrogen diffusion, thermo-metallurgical and mechanical modeling in order to simulate the implant test. Finally, a Weibull type probabilistic criterion based on numerical approaches will be proposed to improve the implant test predictive capability in the case of multi-pass welding processes involving dissimilar materials.
Skip Nav Destination
ASME 2012 Pressure Vessels and Piping Conference
July 15–19, 2012
Toronto, Ontario, Canada
Conference Sponsors:
- Pressure Vessels and Piping Division
ISBN:
978-0-7918-5505-8
PROCEEDINGS PAPER
Implant Test Modeling for Risk of Cold Cracking Assessment During Welding Operations
Christophe Primault,
Christophe Primault
AREVA NP, Chalon-sur-Saône, France
Search for other works by this author on:
Josette Devaux
Josette Devaux
ESI France, Lyon, France
Search for other works by this author on:
Vincent Robin
AREVA NP, Lyon, France
Florence Gommez
AREVA NP, Lyon, France
Christophe Primault
AREVA NP, Chalon-sur-Saône, France
Josette Devaux
ESI France, Lyon, France
Paper No:
PVP2012-78376, pp. 557-565; 9 pages
Published Online:
August 8, 2013
Citation
Robin, V, Gommez, F, Primault, C, & Devaux, J. "Implant Test Modeling for Risk of Cold Cracking Assessment During Welding Operations." Proceedings of the ASME 2012 Pressure Vessels and Piping Conference. Volume 6: Materials and Fabrication, Parts A and B. Toronto, Ontario, Canada. July 15–19, 2012. pp. 557-565. ASME. https://doi.org/10.1115/PVP2012-78376
Download citation file:
15
Views
0
Citations
Related Proceedings Papers
Related Articles
Compressive Thermal Yielding Leading to Hydrogen Cracking in a Fired Cannon
J. Pressure Vessel Technol (February,1999)
Hydrogen-Induced Cracking of Steels Under Wet Hydrogen Sulfide Environment
J. Eng. Ind (November,1976)
Prediction of Dilution and Its Impact on the Metallurgical and Mechanical Behavior of a Multipass Steel Weldment
J. Pressure Vessel Technol (December,2019)
Related Chapters
A 3D Cohesive Modelling Approach for Hydrogen Embrittlement in Welded Joints of X70 Pipeline Steel
International Hydrogen Conference (IHC 2012): Hydrogen-Materials Interactions
Measurement and Modeling of Temperature Dependent Internal Hydrogen Assisted Cracking in Cr-Mo Steel
International Hydrogen Conference (IHC 2012): Hydrogen-Materials Interactions
Materials and Their Weldability
A Quick Guide to Welding and Weld Inspection