For the assessment of welds under high-temperature conditions in the creep or creep-fatigue regimes, the knowledge on the damage location and its temporal evolution are of high importance. The failure behavior of similar welds of ferritic-martensitic steels in the creep regime is well known. For creep-fatigue loading, the behavior of welds is still subject to research but it seems that the heat affected zone (HAZ) limits the lifetime of welded components as well. This local failure behavior is not reflected in design guidelines using weld reduction factors or in typical assessment approaches. The evaluation of local strains and stresses in the HAZ is unavoidable. For the improvement of design and inspection guidelines, a more detailed consideration of weld behavior is of interest.

In this paper, an overview of current developments in the assessment of welds under creep, fatigue, and creep-fatigue loading conditions is given. An assessment approach for creep damage and failure, including the prediction of rupture time and location, is presented. The assessment is based on numerical analyses considering the different behavior of base material and HAZ represented by three different subzones. The approach is validated with the simulation of a uniaxial cross weld, creep crack, and component tests. Whereas the creep behavior of the HAZ compared to base metal is quite well known, there is only little knowledge of their fatigue behavior. Using a set of fatigue tests on HAZ, base metal specimens and cross weld specimens, the influence of fatigue and creep-fatigue loading on the lifetime and failure location of a weld will be discussed. For the numerical simulations, a viscoplastic material law of Chaboche type is used and an evaluation of the local strains in the HAZ allows an attempt to explain the observed failure locations.

This content is only available via PDF.
You do not currently have access to this content.