Reference fatigue crack growth curves for austenitic stainless steels exposed to pressurized water reactor environments have been available in the ASME Code, Section XI in their present form with the publication of Code Case N-809 in Supplement 2 to the 2015 Code Edition. The reference curves are dependent on temperature, loading rate (loading rise time), mean stress (R-ratio), and cyclic stress intensity factor range (ΔK), which are all contained in the model. Since the first implementation of this Code Case, additional data have become available, and the purpose of this paper is to provide the technical basis for revision of the Code Case.

Changes have been made in three areas: R-ratio behavior, threshold for crack growth (ΔKth), and crack growth rate dependence on ΔK. In addition, the temperature model was revisited to study the temperature effects for T < 150°C, where the current model predicts an increase in da/dN based on limited test data at about 100°C (200°F). At this point, the current temperature model is considered conservative and no change is proposed in this revision to N-809.

The R-ratio model has been revised for both high and low carbon stainless steels, a significant improvement over the original procedures. Perhaps the most important revision is in the area of the threshold for the initiation of fatigue crack growth; such data are difficult to obtain, and the previous model was very conservative. Finally, the crack growth exponent was revised slightly to make it consistent with the regression analysis of the original data.

This content is only available via PDF.
You do not currently have access to this content.