In developing cardiovascular systems, definite performance comparison between disease and healthy hemodynamics requires quantitative tools to support advanced microscopy. Mutations in the activin receptor-like kinase 1 (ALK1) gene are responsible for the autosomal dominant vascular disease, hereditary hemorrhagic telangiectasia type 2 (HHT2), characterized by high flow arteriovenous malformations (AVMs) [1]. Recent studies show that the zebrafish mutant violet beauregrade (vbg), which harbors a mutation in alk1, develops an abnormal circulation with dilated cranial vessels and AVMs [2]. Quantitative understanding of mechanical influences on the alk1 mutant phenotype will aid treatment of HHT2 patients. Inspired by earlier studies that demonstrate the capability of using confocal micro-PIV technique to quantify biofluid dynamics in vivo [3], primarily in major vessels (dorsal aorta, vitelline veins), the present study focused on secondary branching great vessels of zebrafish embryos where microcirculation flow regimes are different. Furthermore, confocal microscopy, essentially being an imaging modality, requires rigorous validation efforts with respect to the gold standard measurement protocols (such as PIV) and synthetic scan data. Another objective of this work was to document the intra-species differences of wall shear stress (WSS) and flow physics during embryonic development in aortic arch systems of zebrafish [4].

This content is only available via PDF.
You do not currently have access to this content.