The brain is surrounded by cerebrospinal fluid, and when a brain tumor or a traumatic brain injury has occurred, intracranial pressure, ICP, is developed. Monitoring ICP non-invasively is a challenge. Currently, a probe is inserted through the skull, running the risk of infection, bleeding, and damage to the brain tissue with residual neurologic effects. A novel method to measure ICP using actuators and sensors has been proposed where the skull is vibrated at high frequencies and the receiving signal is measured at the surface eyelid. A design of experiments approach is used to develop the sensor part of the ICP monitoring device so that gain can be maximized using factors such as area, thickness, electrode, and applied pressure. In addition, sensor packaging is optimized to minimize dampening of the signal and ensure durability, reliability, and repeatability of the measurements. Results of this study showed that for a range of areas and thicknesses with Cu-Ni electrodes packaged with super strength durable tape are the optimum factors for the ICP sensor. These parameters are then incorporated into a design that allows ease of application and consistency of the measurements.

This content is only available via PDF.
You do not currently have access to this content.