In order to develop self-powered wireless sensor nodes, many energy harvesting devices, able to convert freely available ambient energy into electrical energy, have been proposed in the literature. A promising technique, in terms of simplicity and high conversion efficiency, is the harvesting of ambient kinetic energy through piezoelectric materials.

The aim of this work is to design and investigate the modal response and the power output of a fractal-inspired, multi-frequency, piezoelectric energy converter, previously presented by the author. Two are the steps of the work. First, a computational modal analysis of the converter is performed. Second, a physical prototype of the converter is built and its eigenfrequencies and power generation under different resistive loads are experimentally examined in the range between 0 and 120 Hz. The converter exhibits three eigenfrequencies and a good power output, in particular at the first eigenfrequency.

This content is only available via PDF.
You do not currently have access to this content.