The stability of motion of a nonlinear neo-Hookean rubber spring pendulum under a special type of support oscillation is studied. The small swing motion is described by a Mathieu-Hill equation, corresponding stability curves for which are generated in a relevant parametric plane with a stability criterion obtained earlier. Autoparametric resonance in the special case of linearized motions is found to occur, as usual. [S0021-8936(00)00801-1]

1.
Minorsky, N., 1962, Nonlinear Oscillations, Van Nostrand Reinhold, New York, p. 506.
2.
Olsson
,
M. G.
,
1976
, “
Why Does a Mass on a Spring Sometimes Misbehave?
Am. J. Phys.
,
44
, No.
12
, pp.
1211
1212
.
3.
Kane
,
T. R.
, and
Kahn
,
M. E.
,
1968
, “
On a class of Two Degrees of Freedom Oscillations
,”
ASME J. Appl. Mech., Series E
,
35
, pp.
547
552
.
4.
Lai
,
H. M.
,
1984
, “
On the Recurrence Phenomenon of a Resonant Spring Pendulum
,”
Am. J. Phys.
,
52
, No.
3
, pp.
219
223
.
5.
Anicin
,
B. A.
,
Davidovic
,
D. M.
, and
Babovic
,
V. M.
,
1993
, “
On the Linear Theory of the Elastic Pendulum
,”
Eur. J. Phys.
,
14
, pp.
132
135
.
6.
Ryland
II,
H. G.
, and
Meirovitch
,
L.
,
1977
, “
Stability Boundaries of a Swinging Spring With Oscillating Support
,”
J. Sound Vib.
,
51
, No.
4
, pp.
547
560
.
7.
Nunez-Yepez
,
N.
,
Salas-Brito
,
A. L.
,
Vargas
,
C. A.
, and
Vincente
,
L.
,
1990
, “
Onset of Chaos in an Extensible Pendulum
,”
Phys. Lett. A
,
145
, pp.
101
105
.
8.
Cuerno
,
R.
,
Ranada
,
A. F.
, and
Ruiz-Lorenzo
,
J. J.
,
1992
, “
Deterministic Chaos in the Elastic Pendulum: A simple Laboratory for Nonlinear Dynamics
,”
Am. J. Phys.
,
60
, No.
1
, pp.
73
79
.
9.
Nayfeh, A. H., and Mook, D. T., 1979, Nonlinear Oscillation, John Wiley and Sons, New York.
10.
Beatty
,
M. F.
,
1983
, “
Finite Amplitude Oscillations of a Simple Rubber Support System
,”
Arch. Ration. Mech. Anal.
,
83
, No.
3
, pp.
195
219
.
11.
Beatty
,
M. F.
, and
Bhattacharyya
,
R.
,
1990
, “
Poynting Oscillations of a Rigid Disk Supported by a Neo-Hookean Rubber Shaft
,”
J. Elast.
,
24
, pp.
135
186
.
12.
Bellman, R., 1969, Stability Theory of Differential Equations, Dover, New York.
13.
Bhattacharyya
,
R.
,
1995
, “
A Stability Theorem for Hill’s Equation for Engineering Applications
,”
ASME J. Vibr. Acoust.
,
117
, pp.
380
381
.
14.
Zhou
,
Z.
,
1993
, “
Coupled Shear-Torsional Motion of a Rubber Support System
,”
J. Elast.
,
30
, pp.
123
189
.
15.
Cunningham, W. J., 1958, Introduction to Nonlinear Analysis, McGraw-Hill, New York.
You do not currently have access to this content.