The stability of motion of a nonlinear neo-Hookean rubber spring pendulum under a special type of support oscillation is studied. The small swing motion is described by a Mathieu-Hill equation, corresponding stability curves for which are generated in a relevant parametric plane with a stability criterion obtained earlier. Autoparametric resonance in the special case of linearized motions is found to occur, as usual. [S0021-8936(00)00801-1]
Issue Section:
Technical Papers
1.
Minorsky, N., 1962, Nonlinear Oscillations, Van Nostrand Reinhold, New York, p. 506.
2.
Olsson
, M. G.
, 1976
, “Why Does a Mass on a Spring Sometimes Misbehave?
” Am. J. Phys.
, 44
, No. 12
, pp. 1211
–1212
.3.
Kane
, T. R.
, and Kahn
, M. E.
, 1968
, “On a class of Two Degrees of Freedom Oscillations
,” ASME J. Appl. Mech., Series E
, 35
, pp. 547
–552
.4.
Lai
, H. M.
, 1984
, “On the Recurrence Phenomenon of a Resonant Spring Pendulum
,” Am. J. Phys.
, 52
, No. 3
, pp. 219
–223
.5.
Anicin
, B. A.
, Davidovic
, D. M.
, and Babovic
, V. M.
, 1993
, “On the Linear Theory of the Elastic Pendulum
,” Eur. J. Phys.
, 14
, pp. 132
–135
.6.
Ryland
II, H. G.
, and Meirovitch
, L.
, 1977
, “Stability Boundaries of a Swinging Spring With Oscillating Support
,” J. Sound Vib.
, 51
, No. 4
, pp. 547
–560
.7.
Nunez-Yepez
, N.
, Salas-Brito
, A. L.
, Vargas
, C. A.
, and Vincente
, L.
, 1990
, “Onset of Chaos in an Extensible Pendulum
,” Phys. Lett. A
, 145
, pp. 101
–105
.8.
Cuerno
, R.
, Ranada
, A. F.
, and Ruiz-Lorenzo
, J. J.
, 1992
, “Deterministic Chaos in the Elastic Pendulum: A simple Laboratory for Nonlinear Dynamics
,” Am. J. Phys.
, 60
, No. 1
, pp. 73
–79
.9.
Nayfeh, A. H., and Mook, D. T., 1979, Nonlinear Oscillation, John Wiley and Sons, New York.
10.
Beatty
, M. F.
, 1983
, “Finite Amplitude Oscillations of a Simple Rubber Support System
,” Arch. Ration. Mech. Anal.
, 83
, No. 3
, pp. 195
–219
.11.
Beatty
, M. F.
, and Bhattacharyya
, R.
, 1990
, “Poynting Oscillations of a Rigid Disk Supported by a Neo-Hookean Rubber Shaft
,” J. Elast.
, 24
, pp. 135
–186
.12.
Bellman, R., 1969, Stability Theory of Differential Equations, Dover, New York.
13.
Bhattacharyya
, R.
, 1995
, “A Stability Theorem for Hill’s Equation for Engineering Applications
,” ASME J. Vibr. Acoust.
, 117
, pp. 380
–381
.14.
Zhou
, Z.
, 1993
, “Coupled Shear-Torsional Motion of a Rubber Support System
,” J. Elast.
, 30
, pp. 123
–189
.15.
Cunningham, W. J., 1958, Introduction to Nonlinear Analysis, McGraw-Hill, New York.
Copyright © 2000
by ASME
You do not currently have access to this content.