Abstract

Explosives are commonly used in terrorist attacks and the craters formed by blast waves can be used as a diagnostic tool. For example, the focus of the explosion and the mass of the explosive used in the attack can be deduced by examining the location, geometry, and dimensions of the crater. However, studies about craters produced by explosions on or above ground level, which would be the case when the explosive charge is situated in a vehicle, are rarely found in the open technical literature. In this paper, a numerical study on craters formed by explosive loads located on the soil surface is presented. The soil parameters used in the numerical model, as well as the analysis procedure, were validated against experimental observations of the crater diameters. Results of numerical tests performed with different amounts of explosive on the soil surface are presented. Moreover, the effect of elevation of the center of energy release of explosive loads located on the soil surface is analyzed and discussed. Simple predictive equations for the crater diameter are presented.

References

1.
Baker
,
W. E.
,
Cox
,
P. A.
,
Westine
,
P. S.
,
Kulesz
,
J. J.
, and
Strehlow
,
R. A.
, 1983,
Explosion Hazards and Evaluation
,
Elsevier
, Amsterdam.
2.
Smith
,
P. D.
, and
Hetherington
,
J. G.
, 1994,
Blast and Ballistic Loading of Structures
,
Butterworth-Heinemann Ltd.
, UK.
3.
Kinney
,
G. F.
, and
Graham
,
K. J.
, 1985,
Explosive Shocks in Air
, 2nd ed.,
Springer Verlag
, New York.
4.
Persson
,
P. A.
,
Holmberg
,
R.
, and
Lee
,
J.
, 1994,
Rock Blasting and Explosives Engineering
,
CRC Press
, Boca Raton, FL.
5.
Bull
,
J. W.
, and
Woodford
,
C. H.
, 1998, “
Camouflets and Their Effects on Runway Supports
,”
Comput. Struct.
0045-7949,
69
(
6
), pp.
695
706
.
6.
Baker
,
W. E.
,
Westine
,
P. S.
, and
Dodge
,
F. T.
, 1991,
Similarity Methods in Engineering Dynamics
,
Elsevier
, Amsterdam.
7.
Melosh
,
H. J.
, 1989,
Impact Cratering—A Geologic Process
,
The Clarendon Press, Oxford University Press
, New York.
8.
Iturrioz
,
I.
, and
Riera
,
J. D.
, 2001, “
Numerical Study of the Effect of Explosives on a Plane Surface
,” XII Congress on Num. Methods and Their Applications, ENIEF 2001, Argentina.
9.
Yang
,
R.
,
Bawden
,
W. F.
, and
Katsabanis
,
P. D.
, 1996, “
A New Constitutive Model for Blast Damage
,”
Int. J. Rock Mech. Min. Sci. Geomech. Abstr.
0148-9062,
33
(
3
), pp.
245
254
.
10.
Liu
,
L.
, and
Katsabanis
,
P. D.
, 1997, “
Development of a Continuum Damage Model for Blasting Analysis
,”
Int. J. Rock Mech. Min. Sci.
1365-1609,
34
(
2
), pp.
217
231
.
11.
Wu
,
C.
,
Lu
,
Y.
, and
Hao
,
H.
, 2004, “
Numerical Prediction of Blast-Induced Stress Wave From Large-Scale Underground Explosion
,”
Int. J. Numer. Analyt. Meth. Geomech.
0363-9061,
28
, pp.
93
109
.
12.
Wang
,
Z.
, and
Lu
,
Y.
, 2003, “
Numerical Analysis on Dynamic Deformation Mechanism of Soils Under Blast Loading
,”
Soil Dyn. Earthquake Eng.
0267-7261,
23
, pp.
705
714
.
13.
Zhou
,
X. L.
,
Wang
,
J. H.
, and
Lu
,
J. F.
, 2003, “
Transient Dynamic Response of Poroelastic Medium Subjected to Impulsive Loading
,”
Comput. Geotech.
0266-352X,
30
, pp.
109
120
.
14.
Ambrosini
,
R. D.
,
Luccioni
,
B. M.
,
Danesi
,
R. F.
,
Riera
,
J. D.
, and
Rocha
,
M. M.
, 2002, “
Size of Craters Produced by Explosive Charges on or Above the Ground Surface
,”
Shock Waves
0938-1287,
12
(
1
), pp.
69
78
.
15.
Baratoux
,
D.
, and
Melosh
,
H. J.
, 2003, “
The Formation of Shatter Cones by Shock Wave Interference During Impacting
,”
Earth Planet. Sci. Lett.
0012-821X,
216
, pp.
43
54
.
16.
Nolan
,
M. C.
,
Asphaug
,
E.
,
Greenberg
,
R.
, and
Melosh
,
H. J.
, 2001, “
Impacts on Asteroids: Fragmentation, Regolith Transport, and Disruption
,”
Icarus
0019-1035,
153
, pp.
1
15
.
17.
Pierazzo
,
E.
, and
Melosh
,
H. J.
, 1999, “
Hydrocode Modeling of Chicxulub as an Oblique Impact Event
,”
Earth Planet. Sci. Lett.
0012-821X,
165
, pp.
163
176
.
18.
AUTODYN
, 2002,
Interactive Non-Linear Dynamic Analysis Software
, Version 4.3, User's Manual, Century Dynamics Inc.
19.
Cowler
,
M. S.
, and
Hancock
,
S. L.
, 1979, “
Dynamic Fluid-Structure Analysis of Shells Using the PISCES 2DELK Computer Code
,” 5th Int. Conf. on Structural Mechanics in Reactor Technology, Paper No. B1/6, Berlin, West Germany, August.
20.
Hancock
,
S.
, 1976, “
Finite Difference Equations for PISCES-2DELK
,” TCAM-76-2, Physics International Company Technical Memo TCAM 76-2.
21.
Wilkins
,
M. L.
, 1964, “
Calculation of Elastic-Plastic Flow
,”
Methods Comput. Phys.
0076-6860,
3
, pp.
211
263
.
22.
Youngs
,
D. L.
, 1982, “
Time-Dependent Multimaterial Flow With Large Fluid Distortion
,” Numer. Methods Fluid Dyn.,
K. W.
Morton
and
M. J.
Baines
, eds., pp.
273
285
.
23.
Lee
,
E. L.
, and
Tarver
,
C. M.
, 1980, “
Phenomenological Model of Shock Initiation in Heterogeneous Explosives
,”
Phys. Fluids
0031-9171,
23
(
12
), pp.
2362
2372
.
24.
Ohsaki
,
Y.
, and
Iwasaki
,
R.
, 1973, “
On Dynamic Shear Moduli and Poisson`s Ratios of Soil Deposits
,”
Soils Found.
0038-0806,
13
, pp.
61
73
.
25.
Hara
,
A.
,
Ohta
,
T.
,
Niwa
,
M.
,
Tanaka
,
S.
, and
Banno
,
T.
, 1974, “
Shear Modulus and Shear Strength of Cohesive Soils
,”
Soils Found.
0038-0806,
14
, pp.
1
12
.
26.
Elliot
,
C. L.
,
Mays
,
G. C.
, and
Smith
,
P. D.
, 1992, “
The Protection of Buildings Against Terrorism and Disorder
,”
Proc. Inst. Civ. Eng., Struct. Build.
0965-0911,
94
, pp.
287
297
.
27.
Millington
,
G.
, 1994, “
Discussion of `The Protection of Buildings Against Terrorism and Disorder
,”
Proc. Inst. Civ. Eng., Struct. Build.
0965-0911,
104
, pp.
343
350
.
28.
Formby
,
S. A.
, and
Wharton
,
R. K.
, 1996, “
Blast Characteristics and TNT Equivalence Values for Some Commercial Explosives Detonated at Ground Level
,”
J. Hazard. Mater.
0304-3894,
50
, pp.
183
198
.
You do not currently have access to this content.