Four-point-bending V-notched specimens of lead zirconate titanate (PZT) poled parallel to the long axis are fractured under conditions of controlled crack growth in a custom-made device. In addition to the mechanical loading electric fields, up to 500Vmm are applied parallel and anti-parallel to the poling direction, i.e., perpendicular to the crack surface. To determine the different contributions to the total energy release rate, the mechanical and the piezoelectric compliance, as well as the electrical capacitance of the sample, are recorded continuously using small signal modulation/demodulation techniques. This allows for the calculation of the mechanical, the piezoelectric, and the electrical part of the total energy release rate due to linear processes. The sum of these linear contributions during controlled crack growth is attributed to the intrinsic toughness of the material. The nonlinear part of the total energy release rate is mostly associated to domain switching leading to a switching zone around the crack tip. The measured force-displacement curve, together with the modulation technique, enables us to determine this mechanical nonlinear contribution to the overall toughness of PZT. The intrinsic material toughness is only slightly dependent on the applied electric field (10% effect), which can be explained by screening charges or electrical breakdown in the crack interior. The part of the toughness due to inelastic processes increases from negative to positive electric fields by up to 100%. For the corresponding nonlinear electric energy change during crack growth, only a rough estimate is performed.

1.
Haertling
,
G. H.
, 1999, “
Ferroelectric Ceramics: History and Technology
,”
J. Am. Ceram. Soc.
0002-7820,
82
(
4
), pp.
797
818
.
2.
Freiman
,
S. W.
, and
Pohanka
,
R. C.
, 1989, “
Review of Mechanically Related Failures of Ceramic Capacitors
,”
J. Am. Ceram. Soc.
0002-7820,
72
(
12
), pp.
2258
2263
.
3.
Suo
,
Z.
,
Kuo
,
C.-M.
,
Barnett
,
D. M.
, and
Willis
,
J. R.
, 1992, “
Fracture Mechanics for Piezoelectric Ceramics
,”
J. Mech. Phys. Solids
0022-5096,
40
(
4
), pp.
739
765
.
4.
McMeeking
,
R. M.
, 1989, “
Electrostrictive Stresses Near Crack-Like Flaws
,”
ZAMP
0044-2275,
40
, pp.
615
627
.
5.
McMeeking
,
R. M.
, 2001, “
Towards a Fracture Mechanics for Brittle Piezoelectric and Dielectric Materials
,”
Int. J. Fract.
0376-9429,
108
(
1
), pp.
25
41
.
6.
Guiu
,
F.
,
Algueró
,
M.
, and
Reece
,
M. J.
, 2003, “
Crack Extension Force and Rate of Mechanical Work of Fracture in Linear Dielectrics and Piezoelectrics
,”
Philos. Mag.
1478-6435,
83
(
7
), pp.
873
888
.
7.
Zhang
,
T. Y.
,
Zhao
,
M.
, and
Tong
,
P.
, 2002, “
Fracture of Piezoelectric Ceramics
,”
Adv. Appl. Mech.
0065-2156,
38
, pp.
147
289
.
8.
Park
,
S.
, and
Sun
,
C.-T.
, 1995, “
Fracture Criteria for Piezoelectric Ceramics
,”
J. Am. Ceram. Soc.
0002-7820,
78
(
6
), pp.
1475
1480
.
9.
Tobin
,
A. G.
, and
Pak
,
Y. E.
, 1993, “
Effect of Electric Fields on Fracture Behavior of PZT Ceramics
,”
Proc. SPIE
0277-786X,
1916
, pp.
78
86
.
10.
Wang
,
H.
, and
Singh
,
R. N.
, 1997, “
Crack Propagation in Piezoelectric Ceramics: Effects of Applied Electric Fields
,”
J. Appl. Phys.
0021-8979,
81
(
11
), pp.
7471
7479
.
11.
Lynch
,
C. S.
, 1998, “
Fracture of Ferroelectric and Relaxor Electro-Ceramics: Influence of Electric Field
,”
Acta Mater.
1359-6454,
46
(
2
), pp.
599
608
.
12.
Fu
,
R.
, and
Zhang
,
T. Y.
, 2000, “
Effects of an Electric Field on the Fracture Toughness of Poled Lead Zirconate Titanate Ceramics
,”
J. Am. Ceram. Soc.
0002-7820,
83
(
5
), pp.
1215
1218
.
13.
Schneider
,
G. A.
, and
Heyer
,
V.
, 1999, “
Influence of the Electric Field on Vickers Indentation Crack Growth in BaTiO3
,”
J. Eur. Ceram. Soc.
0955-2219,
19
, pp.
1299
1306
.
14.
Schneider
,
G. A.
,
Felten
,
F.
, and
McMeeking
,
R. M.
, 2003, “
The Electrical Potential Difference Across Cracks in PZT Measured by Kelvin Probe Microscopy and the Implications for Fracture
,”
Acta Mater.
1359-6454,
51
, pp.
2235
2241
.
15.
Balke
,
H.
,
Kemmer
,
G.
, and
Drescher
,
J.
, 1997, “
Some Remarks on Fracture Mechanics of Piezoelectric Solids
,”
Proceedings of the International Conference and Exhibition of Micro Materials’97
,
B.
Michel
and
T.
Winkler
, eds., pp.
398
401
.
16.
Haug
,
A.
, and
McMeeking
,
R.
, 2006, “
Cracks With Surface Charge in Poled Ferroelectrics
,”
Eur. J. Mech. A/Solids
0997-7538,
25
, pp.
24
41
.
17.
Landis
,
C. M.
, 2004, “
Energetically Consistent Boundary Conditions for Electromechanical Fracture
,”
Int. J. Solids Struct.
0020-7683,
41
, pp.
6291
6315
.
18.
Jelitto
,
H.
,
Felten
,
F.
,
Häusler
,
C.
,
Kessler
,
H.
,
Balke
,
H.
, and
Schneider
,
G. A.
, 2005, “
Measurement of Energy Release Rates for Cracks in PZT Under Electromechanical Loads
,” Electroceramics 2004,
J. Eur. Ceram. Soc.
0955-2219,
25
, pp.
2817
2820
.
19.
Sakai
,
M.
, and
Bradt
,
R. C.
, 1986, “
Graphical Methods for Determining the Nonlinear Fracture Parameters of Silica and Graphite Refractory Composites
,”
Fourth International Symposium on the Fracture Mechanics of Ceramics
, VPI, Chicago, June 19–21, 1985,
Plenum Press
, New York, Vol.
7
, pp.
127
142
.
20.
Rose
,
L. R. F.
, and
Swain
,
M. V.
, 1986, “
Two R-Curves for Partially Stabilized Zirkonia
,”
J. Am. Ceram. Soc.
0002-7820,
69
(
3
), pp.
203
207
.
21.
Kreher
,
W. S.
, 2002, “
Influence of the Domain Switching Zones on the Fracture Toughness of Ferroelectrics
,”
J. Mech. Phys. Solids
0022-5096,
50
, pp.
1029
1050
.
22.
Suo
,
Z.
, 1991, “
Mechanics Concepts for Failure in Ferroelectric Ceramics
,”
Smart Structures and Materials
, ASME 1991, AD-Vol.
24
/AMD-Vol.
123
, pp.
1
6
.
23.
Jelitto
,
H.
,
Keßler
,
H.
,
Schneider
,
G. A.
, and
Balke
,
H.
, 2004, “
Fracture Behavior of Poled Piezoelectric PZT Under Mechanical and Electrical Loads
,”
J. Eur. Ceram. Soc.
0955-2219,
25
(
5
), pp.
749
757
.
24.
Kübler
,
J.
, 1998, “
Bestimmung der Bruchzähigkeit keramischer Werkstoffe mit der SEVNB Methode: Resultate eines VAMAS/ESIS Ringversuches
,” in
Proceedings of the Werkstoffwoche
,
EMPA
, Dubendorf, Switzerland.
25.
Kübler
,
J.
, 2001, “
Fracture Toughness of Ceramics Using the SEVNB Method: From a Preliminary Study to a Standard Test Method
,” in
Fracture Resistance Testing of Monolithic and Composite Brittle Materials, ASTM STP 1409
,
J. A.
Salem
,
M. G.
Jenkins
, and
G. D.
Quinn
, eds.,
American Society for Testing and Materials
, West Conshohocken, PA.
26.
Fett
,
T.
,
Munz
,
D.
, and
Thun
,
G.
, 1995, “
Evaluation of Bridging Parameters in Aluminas From R-Curves by Use of the Fracture Mechanical Weight Function
,”
J. Am. Ceram. Soc.
0002-7820,
78
(
4
), pp.
949
951
.
27.
Jelitto
,
H.
,
Felten
,
F.
, and
Schneider
,
G. A.
, 2005, “
Experimenteller Aufbau zur Messung der Energiefreisetzungsrate für Risswachstum in PZT unter elektromechanischer Last
,” DVM-Bericht
237
, 37. Tagung des DVM-Arbeitskreises Bruchvorgänge, Technische Sicherheit, Zuverlässigkeit und Lebensdauer, pp.
365
372
.
28.
Heyer
,
V.
,
Schneider
,
G. A.
,
Balke
,
H.
,
Drescher
,
J.
, and
Bahr
,
H.-A.
, 1998, “
A Fracture Criterion for Conducting Cracks in Homogeneously Poled Piezoelectric PZT-PIC151 Ceramics
,”
Acta Mater.
1359-6454,
46
(
18
), pp.
6615
6622
.
29.
Muñoz-Saldaña
,
J.
,
Schneider
,
G. A.
, and
Eng
,
L. M.
, 2001, “
Stress Induced Movement of Ferroelastic Domain Walls in BaTiO3 Single Crystals Evaluated by Scanning Force Microscopy
,”
Surf. Sci.
0039-6028,
480
, pp.
L402
L410
.
30.
Kemmer
,
G.
, 2000, “
Berechnung von elektromagnetischen Intensitätsparametern bei Rissen in Piezokeramiken
,”
Fortschritt-Berichte VDI
, Reihe
18
, Nr.
261
, VDI Verlag, Düsseldorf (in German), p.
33
.
31.
Kessler
,
H.
,
Balke
,
H.
,
Jelitto
,
H.
, and
Schneider
,
G. A.
, 2004, “
An Approximation for Electrically Semipermeable Edge Cracks and its Application to Fracture Analysis of PZT
,”
Proc. Appl. Math. Mech.
1617-7061,
4
, pp.
282
283
.
32.
Kounga Njiwa
,
A. B.
,
Lupascu
,
D. C.
, and
Rödel
,
J.
, 2004, “
Crack Tip Switching Zone in Ferroelectric Ferroelastic Materials
,”
Acta Mater.
1359-6454,
52
, pp.
4919
4927
.
33.
Hackemann
,
S.
, and
Pfeiffer
,
W.
, 2003, “
Domain Switching in Process Zones of PZT: Characterization by Microdiffraction and Fracture Mechanical Methods
,”
J. Eur. Ceram. Soc.
0955-2219,
23
, pp.
141
151
.
34.
Kolleck
,
A.
, 2000, “
Einfluß der ferroelastischen Domänenschaltprozesse auf die Bruchzähigkeit und Bruchfestigkeit von BaTiO3 und PZT
,”
Fortschritt-Berichte VDI
, Reihe
5
, Nr.
614
, VDI Verlag, Düsseldorf (in German), pp.
159
160
.
35.
Hwang
,
S. C.
,
Lynch
,
C. S.
, and
McMeeking
,
R. M.
, 1995, “
Ferroelectric/Ferroelastic Interactions and a Polarization Switching Model
,”
Acta Metall. Mater.
0956-7151,
43
(
5
), pp.
2073
2084
.
You do not currently have access to this content.