More accurate manufacturing process models come from better understanding of texture evolution and preferred orientations. We investigate the texture evolution in the simplified physical framework of a planar polycrystal with two slip systems used by Prantil et al. (1993, “An Analysis of Texture and Plastic Spin for Planar Polycrystal,” J. Mech. Phys. Solids, 41(8), pp. 1357–1382). In the planar polycrystal, the crystal orientations behave in a manner similar to that of a system of coupled oscillators represented by the Kuramoto model. The crystal plasticity finite element method and the stochastic Taylor model (STM), a stochastic method for mean-field polycrystal plasticity, predict the development of a steady-state texture not shown when employing the Taylor hypothesis. From this analysis, the STM appears to be a useful homogenization method when using representative standard deviations.

1.
Van Houtte
,
P.
, and
Van Bael
,
A.
, 2005, “
Multi-Level Versus Heirarchical Modeling of the Plastic Deformation of Polycrystalline Materials Implementation in Fe Codes
,”
Proceedings of the International Symposium on Plasticity
.
2.
Taylor
,
G. I.
, 1938, “
Plastic Strain in Metals
,”
J. Inst. Metals
,
62
, pp.
307
324
.
3.
Harren
,
S. V.
, and
Asaro
,
R. J.
, 1989, “
Nonuniform Deformations in Polycrystals and Aspects of the Validity of the Taylor Model
,”
J. Mech. Phys. Solids
0022-5096,
37
(
2
), pp.
191
232
.
4.
Kalidindi
,
S. R.
,
Bronkhorst
,
C. A.
, and
Anand
,
L.
, 1992, “
Crystallographic Texture Evolution During Bulk Deformation Processing of fcc Metals
,”
J. Mech. Phys. Solids
0022-5096,
40
, pp.
537
569
.
5.
Honneff
,
H.
, and
Mecking
,
H.
, 1982, “
Analysis of the Deformation Texture at Different Rolling Conditions
,”
Proceedings of ICOTOM 6
, Vol.
1
, pp.
347
355
.
6.
Kocks
,
U. F.
, and
Chandra
,
H.
, 1982, “
Slip Geometry in Partially Constrained Deformation
,”
Acta Metall.
0001-6160,
30
, pp.
695
709
.
7.
Van Houtte
,
P.
, 1982, “
On the Equivalence of the Relaxed Taylor Theory and the Bishop-Hill Theory for Partially Constrained Plastic Deformation of Crystals
,”
Mater. Sci. Eng.
0025-5416,
55
, pp.
69
77
.
8.
Lebensohn
,
R. A.
, and
Tomé
,
C. N.
, 1993, “
A Self-Consistent Anisotropic Approach for the Simulation of Plastic Deformation and Texture Development of Polycrystals: Application to Zirconium Alloys
,”
Acta Metall. Mater.
0956-7151,
41
, pp.
2611
2624
.
9.
Prantil
,
V. C.
,
Jenkins
,
J. T.
, and
Dawson
,
P. R.
, 1993, “
An Analysis of Texture and Plastic Spin for Planar Polycrystals
,”
J. Mech. Phys. Solids
0022-5096,
41
(
8
), pp.
1357
1382
.
10.
Kumar
,
A.
, and
Dawson
,
P. R.
, 1996, “
The Simulation of Texture Evolution with Finite Elements Over Orientation Space II. Application to Planar Crystals
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
130
, pp.
247
261
.
11.
Kumar
,
A.
, 1996, “
Polycrystal Modeling With Finite Elements Over Orientatation Space
,” Ph.D. thesis, Cornell University.
12.
Asaro
,
R. J.
, and
Needleman
,
A.
, 1985, “
Texture Development and Strain Hardening in Rate Dependent Polycrystals
,”
Acta Metall.
0001-6160,
33
, pp.
923
953
.
13.
Mathur
,
K. K.
, and
Dawson
,
P. R.
, 1989, “
On Modeling the Development of Crystallographic Texture in Bulk Forming Processes
,”
Int. J. Plast.
0749-6419,
5
(
1
), pp.
67
94
.
14.
Becker
,
R.
, 1991, “
Analysis of Texture Evolution in Channel Die Compression–I. Effects of Grain Interaction
,”
Acta Metall. Mater.
0956-7151,
39
(
6
), pp.
1211
30
.
15.
Kalidindi
,
S. R.
,
Bronkhorst
,
C. A.
, and
Anand
,
L.
, 1994, “
On the Accuracy of the Taylor Assumption in Polycrystalline Plasticity
,”
Anisotropy and Localization of Plastic Deformation
,
Elsevier
,
New York
, pp.
139
142
.
16.
Beaudoin
,
A. J.
,
Mathur
,
K. K.
,
Dawson
,
P. R.
, and
Johnson
,
G. C.
, 1993, “
Three-Dimensional Deformation Process Simulation With Explicit Use of Polycrystal Plasticity Models
,”
Int. J. Plast.
0749-6419,
9
(
7
), pp.
833
860
.
17.
Ma
,
A.
,
Roters
,
F.
, and
Raabe
,
D.
, 2004, “
Numerical Study of Textures and Lankford Values for fcc Polycrystals by Use of a Modified Taylor Model
,”
Comput. Mater. Sci.
0927-0256,
29
, pp.
353
361
.
18.
Arwade
,
S. R.
, and
Grigoriu
,
M.
, 2003, “
Evolution of Crystallographic Orientations in Crystals Subject to Random and Deterministic Deformation
,”
Probab. Eng. Mech.
0266-8920,
18
, pp.
289
299
.
19.
Kok
,
S.
,
Beaudoin
,
A. J.
, and
Tortorelli
,
D. A.
, 2002, “
A Polycrystal Plasticity Model Based on the Mechanical Threshold
,”
Int. J. Plast.
0749-6419,
18
, pp.
715
741
.
20.
Kuramoto
,
Y.
, 1984,
Chemical Oscillations, Waves, and Turbulence
,
Springer
,
Berlin
.
21.
Strogatz
,
S. H.
, 2000, “
From Kuramoto to Crawford. Exploring the Onset of Synchronization in Populations of Coupled Oscillators
,”
Physica D
0167-2789,
143
(
1–4
), pp.
1
20
.
22.
Bronkhorst
,
C. A.
,
Hansen
,
B. L.
,
Cerreta
,
E. K.
, and
Bingert
,
J. F.
, 2007, “
Modeling the Microstructural Evolution of Metallic Polycrystalline Materials Under Localization Conditions
,”
J. Mech. Phys. Solids
0022-5096,
55
(
11
), pp.
2351
2383
.
23.
Mackey
,
M. C.
,
Longtin
,
A.
, and
Lasota
,
A.
, 1990, “
Noise-Induced Global Asymptotic Stability
,”
J. Stat. Phys.
0022-4715,
60
(
5/6
), pp.
735
751
.
24.
Engler
,
O.
, 2002, “
A New Approach to More Realistic Rolling Texture Simulation
,”
Adv. Eng. Mater.
1438-1656,
4
(
4
), pp.
181
186
.
25.
Sarma
,
G. B.
, and
Dawson
,
P. R.
, 1996, “
Effects of Interactions Among Crystals on the Inhomogeneous Deformations of Polycrystals
,”
Acta Mater.
1359-6454,
44
(
5
), pp.
1937
1953
.
26.
Sarma
,
G. B.
, and
Dawson
,
P. R.
, 1996, “
Texture Predictions Using a Polycrystal Plasticity Model Incorporating Neighbor Interactions
,”
Int. J. Plast.
0749-6419,
12
(
8
), pp.
1023
1054
.
27.
Rao
,
S. S.
,
Reliability-Based Design
,
McGraw-Hill
,
New York
, Chap. 5, pp.
115
138
.
You do not currently have access to this content.