This article presents analytical and computational methods for mixed-mode fracture analysis of an orthotropic functionally graded material (FGM) coating-bond coat-substrate structure. The analytical solution is developed by considering an embedded crack in the orthotropic FGM coating. The embedded crack is assumed to be loaded through arbitrary self-equilibrating mixed-mode tractions that are applied to its surfaces. Governing partial differential equations for each of the layers in the trilayer structure are derived in terms of the effective parameters of plane orthotropic elasticity. The problem is then reduced to a system of two singular integral equations, which is solved numerically to evaluate the mixed-mode crack tip parameters. The computational approach is based on the finite element method and is developed by applying the displacement correlation technique. The use of two separate methods in the analyses allowed direct comparisons of the results obtained for an embedded crack in the orthotropic FGM coating, leading to a highly accurate numerical predictive capability. The finite element based approach is used to generate further numerical results by considering periodic cracking in the orthotropic FGM coating. Parametric analyses presented in this article illustrate the influences of the material nonhomogeneity and orthotropy constants, the bond coat thickness, and the crack periodicity on the mixed-mode stress intensity factors and the energy release rate.

1.
Sampath
,
S.
,
Herman
,
H.
,
Shimoda
,
N.
, and
Saito
,
T.
, 1995, “
Thermal Spray Processing of FGMs
,”
MRS Bull.
0883-7694,
20
, pp.
27
31
.
2.
Kaysser
,
W. A.
, and
Ilschner
,
B.
, 1995, “
FGM Research Activities in Europe
,”
MRS Bull.
0883-7694,
20
, pp.
22
26
.
3.
Chen
,
J.
,
Liu
,
Z.
, and
Zou
,
Z.
, 2002, “
Transient Internal Crack Problem for a Nonhomogeneous Orthotropic Strip (Mode I)
,”
Int. J. Eng. Sci.
0020-7225,
40
, pp.
1761
1774
.
4.
Guo
,
L.-C.
,
Wu
,
L.-Z.
,
Zeng
,
T.
, and
Ma
,
L.
, 2004, “
Mode I Crack Problem for a Functionally Graded Orthotropic Strip
,”
Eur. J. Mech. A/Solids
0997-7538,
23
, pp.
219
234
.
5.
Kim
,
J.-H.
, and
Paulino
,
G. H.
, 2002, “
Mixed-Mode Fracture of Orthotropic Functionally Graded Materials Using Finite Elements and the Modified Crack Closure Method
,”
Eng. Fract. Mech.
0013-7944,
69
, pp.
1557
1586
.
6.
Kim
,
J.-H.
, and
Paulino
,
G. H.
, 2003, “
Mixed-Mode J-Integral Formulation and Implementation Using Graded Elements for Fracture Analysis of Nonhomogeneous Orthotropic Materials
,”
Mech. Mater.
0167-6636,
35
, pp.
107
128
.
7.
Kim
,
J.-H.
, and
Paulino
,
G. H.
, 2003, “
The Interaction Integral for Fracture of Orthotropic Functionally Graded Materials: Evaluation of Stress Intensity Factors
,”
Int. J. Solids Struct.
0020-7683,
40
, pp.
3967
4001
.
8.
Kim
,
J. H.
, and
Paulino
,
G. H.
, 2005, “
Consistent Formulations of the Interaction Integral Method for Fracture of Functionally Graded Materials
,”
Trans. ASME, J. Appl. Mech.
0021-8936,
72
, pp.
351
364
.
9.
Guo
,
L.-C.
,
Wu
,
L.-Z.
, and
Zeng
,
T.
, 2005, “
The Dynamic Response of an Edge Crack in a Functionally Graded Orthotropic Strip
,”
Mech. Res. Commun.
0093-6413,
32
, pp.
385
400
.
10.
Dag
,
S.
,
Yildirim
,
B.
, and
Erdogan
,
F.
, 2004, “
Interface Crack Problems in Graded Orthotropic Media: Analytical and Computational Approaches
,”
Int. J. Fract.
0376-9429,
130
, pp.
471
496
.
11.
Chen
,
J.
, 2005, “
Determination of Thermal Stress Intensity Factors for an Interface Crack in a Graded Orthotropic Coating-Substrate Structure
,”
Int. J. Fract.
0376-9429,
133
, pp.
303
328
.
12.
Dag
,
S.
, 2006, “
Thermal Fracture Analysis of Orthotropic Functionally Graded Materials Using an Equivalent Domain Integral Approach
,”
Eng. Fract. Mech.
0013-7944,
73
, pp.
2802
2828
.
13.
Krenk
,
S.
, 1979, “
On the Elastic Constants of Plane Orthotropic Elasticity
,”
J. Compos. Mater.
0021-9983,
13
, pp.
108
116
.
14.
Pindera
,
M.-J.
, and
Chen
,
L.
, 2007, “
Microstructural Effects in Finite Multilayers With Aligned Cracks
,”
Eng. Fract. Mech.
0013-7944,
74
, pp.
1697
1718
.
15.
Ozturk
,
M.
, and
Erdogan
,
F.
, 1999, “
The Mixed Mode Crack Problem in an Inhomogeneous Orthotropic Medium
,”
Int. J. Fract.
0376-9429,
98
, pp.
243
261
.
16.
Ozturk
,
M.
, and
Erdogan
,
F.
, 1997, “
Mode I Crack Problem in an Inhomogeneous Orthotropic Medium
,”
Int. J. Eng. Sci.
0020-7225,
35
, pp.
869
883
.
17.
Ilhan
,
K. A.
, 2007, “
Mixed-Mode Fracture Analysis of Orthotropic FGM Coatings Under Mechanical and Thermal Loads
,” Ph.D. thesis, Department of Mechanical Engineering, Middle East Technical University, Ankara, Turkey.
18.
Erdogan
,
F.
, 1978, “
Mixed Boundary-Value Problems in Mechanics
,”
Mechanics Today
,
S.
Nemat-Nasser
, ed.,
Pergamon
,
Elmsford, New York
, pp.
1
84
.
19.
1997, ANSYS, Release 5.4, ANSYS Basic Analysis Procedures Guide, Canonsburg, PA.
20.
Yildirim
,
B.
,
Dag
,
S.
, and
Erdogan
,
F.
, 2005, “
Three Dimensional Fracture Analysis of FGM Coatings Under Thermomechanical Loading
,”
Int. J. Fract.
0376-9429,
132
, pp.
371
397
.
21.
Santare
,
M. H.
, and
Lambros
,
J.
, 2000, “
Use of Graded Finite Elements to Model the Behavior of Nonhomogeneous Materials
,”
Trans. ASME, J. Appl. Mech.
0021-8936,
67
, pp.
819
822
.
22.
Li
,
C.
,
Zou
,
Z.
, and
Duan
,
Z.
, 2000, “
Multiple Isoparametric Finite Element Method for Nonhomogeneous Media
,”
Mech. Res. Commun.
0093-6413,
27
, pp.
137
142
.
23.
Kim
,
J.-H.
, and
Paulino
,
G. H.
, 2002, “
Isoparametric Graded Finite Elements for Nonhomogeneous Isotropic and Orthotropic Materials
,”
Trans. ASME, J. Appl. Mech.
0021-8936,
69
, pp.
502
514
.
24.
Banks-Sills
,
L.
, and
Sherman
,
D.
, 1986, “
Comparison of Methods for Calculating Stress Intensity Factors With Quarter Point Elements
,”
Int. J. Fract.
0376-9429,
32
, pp.
127
140
.
25.
Wang
,
B. L.
, and
Mai
,
Y.-W.
, 2005, “
A Periodic Array of Cracks in Functional Graded Materials Subjected to Thermo-Mechanical Loading
,”
Int. J. Eng. Sci.
0020-7225,
43
, pp.
432
446
.
26.
Kokini
,
K.
,
DeJonge
,
J.
,
Rangaraj
,
S.
, and
Beardsley
,
B.
, 2002, “
Thermal Shock of Functionally Graded Thermal Barrier Coatings With Similar Thermal Resistance
,”
Surf. Coat. Technol.
0257-8972,
154
, pp.
223
231
.
27.
Erdogan
,
F.
, 1962, “
On the Stress Distribution in Plates With Collinear Cuts Under Arbitrary Loads
,”
Proceedings of the Fourth U.S. National Congress of Applied Mechanics
, Vol.
1
, pp.
547
553
.
You do not currently have access to this content.