Following the theoretical and computational developments of the pointwise membrane identification method reported in the first part of this paper, we perform a finite inflation test on a rubber balloon to validate the method. The balloon is inflated using a series of pressurized configurations, and a surface mesh that corresponds through all the deformed states is derived using a camera-based three dimensional reconstruction technique. In each configuration, the wall tension is computed by the finite element inverse elastostatic method, and the in-plane stretch relative to a slightly pressurized configuration is computed with the aid of finite element interpolation. Based on the stress-strain characteristics, the Ogden model is employed to describe the material behavior. The elastic parameters at every Gauss point in a selected region are identified simultaneously. To verify the predictive capability of the identified material model, the deformation under a prescribed pressure is predicted using the finite element method and is compared with the physical measurement. The experiment shows that the method can effectively delineate the distributive elastic properties in the balloon wall.

1.
Lu
,
J.
, and
Zhao
,
X.
, 2009, “
Pointwise Identification of Elastic Properties in Nonlinear Hyperelastic Membranes—Part I: Theoretical and Computational Developments
,”
ASME J. Appl. Mech.
0021-8936,
76
, p.
061013
.
2.
Rivlin
,
R. S.
, and
Saunders
,
D. W.
, 1951, “
Large Elastic Deformations of Isotropic Materials—VII. Experiments on the Deformation of Rubber
,”
Proc. R. Soc. London, Ser. A
0950-1207,
243
, pp.
251
288
.
3.
Govindjee
,
S.
, and
Mihalic
,
P. A.
, 1996, “
Computational Methods for Inverse Finite Elastostatics
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
136
, pp.
47
57
.
4.
Govindjee
,
S.
, and
Mihalic
,
P. A.
, 1998, “
Computational Methods for Inverse Deformations in Quasi-Incompressible Finite Elasticity
,”
Int. J. Numer. Methods Eng.
0029-5981,
43
, pp.
821
838
.
5.
Lu
,
J.
,
Zhou
,
X.
, and
Raghavan
,
M. L.
, 2007, “
Inverse Elastostatic Stress Analysis in Pre-Deformed Biological Structures: Demonstration Using Abdominal Aortic Aneurysm
,”
J. Biomech.
0021-9290,
40
, pp.
693
696
.
6.
Lu
,
J.
,
Zhou
,
X.
, and
Raghavan
,
M. L.
, 2007, “
Computational Method of Inverse Elastostatics for Anisotropic Hyperelastic Solids
,”
Int. J. Numer. Methods Eng.
0029-5981,
69
, pp.
1239
1261
.
7.
Lu
,
J.
,
Zhou
,
X.
, and
Raghavan
,
M. L.
, 2008, “
Inverse Method of Stress Analysis for Cerebral Aneurysms
,”
Biomech. Model. Mechanobiol.
1617-7959,
7
, pp.
477
486
.
8.
Zhou
,
X.
, and
Lu
,
J.
, 2008, “
Inverse Formulation for Geometrically Exact Stress Resultant Shells
,”
Int. J. Numer. Methods Eng.
0029-5981,
74
, pp.
1278
1302
.
9.
Luhmann
,
T.
,
Robson
,
S.
,
Kyle
,
S.
, and
Harley
,
I.
, 2006,
Close Range Photogrammetry: Principles, Techniques and Applications
,
Whittles Publishing
,
Dunbeath, Caithness, Scotland, UK
.
10.
Humphrey
,
J. D.
, 2002,
Cardiovascular Solid Mechanics: Cells, Tissues, and Organs
,
Springer
,
New York
.
11.
Rossettos
,
J. N.
, 1966, “
Nonlinear Membrane Solutions for Symmetrically Loaded Deep Membranes of Revolution
,”
NASA
Technical Report No. NASA TN D-3297.
12.
Wu
,
C. H.
, and
Peng
,
D. Y. P.
, 1972, “
On the Asymptotically Spherical Deformation of Arbitrary Membranes of Revolution Fixed Along an Edge and Inflated by Large Pressures—A Nonlinear Boundary Layer Phenomenon
,”
SIAM J. Appl. Math.
0036-1399,
23
, pp.
133
152
.
13.
Hayes
,
M.
, and
Knops
,
R. B.
, 1966, “
On Universal Relations in Elasticity Theory
,”
Z. Angew. Math. Phys.
0044-2275,
17
, pp.
636
639
.
14.
Beatty
,
M. F.
, 1987, “
A Class of Universal Relations in Isotropic Elasticity
,”
J. Elast.
0374-3535,
17
, pp.
113
121
.
15.
Beatty
,
M. F.
, 1989, “
A Class of Universal Relations for Constrained, Isotropic Elasticity Materials
,”
Arch. Mech.
0373-2029,
80
, pp.
299
312
.
16.
Pucci
,
E.
, and
Saccomandi
,
G.
, 1997, “
On Universal Relations in Continuum Mechanics
,”
Continuum Mech. Thermodyn.
0935-1175,
9
, pp.
61
72
.
17.
Rivlin
,
R. S.
, 2000, “
Universal Relations for Elastic Materials
,”
Rendiconti di Matematica e delle sue Applicazioni, Serie VII
,
20
, pp.
35
55
.
18.
Rivlin
,
R. S.
, 1948, “
Large Elastic Deformations of Isotropic Materials, IV. Further Developments of the General Theory
,”
Proc. R. Soc. London, Ser. A
0950-1207,
241
, pp.
368
397
.
19.
Green
,
A. E.
, and
Adkins
,
J. E.
, 1960,
Large Elastic Deformations and Non-Linear Continuum Mechanics
,
Clarendon
,
Oxford
.
20.
Treloar
,
L. R. G.
, 1944, “
Stress-Strain Data for Vulcanized Rubber Under Various Types of Deformation
,”
Trans. Faraday Soc.
0014-7672,
40
, pp.
59
70
.
21.
Valanis
,
K. C.
, and
Landel
,
R. F.
, 1967, “
The Strain-Energy Function of a Hyperelastic Material in Terms of the Extension Ratios
,”
J. Appl. Phys.
0021-8979,
38
, pp.
2997
3002
.
22.
Ogden
,
R. W.
, 1972, “
Large Deformation Isotropic Elasticity—On the Correlation of Theory and Experiment for Incompressible Rubberlike Solids
,”
Proc. R. Soc. London, Ser. A
0950-1207,
326
, pp.
565
584
.
23.
Ogden
,
R. W.
, 1982, “
Elastic Deformation of Rubberlike Solids
,”
Mechanics of Solids, The Rodney Hill 60th Anniversary Volume
,
H. G.
Hopkins
and
M. J.
Sewell
, eds.,
Pergamon
,
Oxford
, pp.
499
537
.
24.
Treloar
,
L. R. G.
, 1976, “
The Mechanics of Rubber Elasticity
,”
Proc. R. Soc. London, Ser. A
0950-1207,
351
, pp.
301
330
.
25.
Gruttmann
,
F.
, and
Taylor
,
R. L.
, 1992, “
Theory and Finite Element Formulation of Rubberlike Membrane Shells Using Principal Stretches
,”
Int. J. Numer. Methods Eng.
0029-5981,
35
, pp.
1111
1126
.
26.
Sun
,
W.
, and
Sacks
,
M. S.
, 2005, “
Finite Element Implementation of a Generalized Fung-Elastic Constitutive Model for Planar Soft Tissues
,”
Biomech. Model. Mechanobiol.
1617-7959,
4
, pp.
190
199
.
27.
Gill
,
P. E.
,
Murray
,
W.
, and
Saunders
,
M. A.
, 2005, “
SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization
,”
SIAM Rev.
0036-1445,
47
, pp.
99
131
.
28.
Humphrey
,
J. D.
,
Strumpf
,
R. K.
, and
Yin
,
F. C. P.
, 1990, “
Determination of a Constitutive Relation for Passive Myocardium, II. Parameter-Estimation
,”
ASME J. Biomech. Eng.
0148-0731,
112
(
3
), pp.
340
346
.
29.
Taylor
,
R. L.
, 2003, FEAP User Manual, V7.5.
30.
Belytschko
,
T.
,
Liu
,
W. K.
,
Organ
,
D.
,
Fleming
,
M.
, and
Krysl
,
P.
, 1996, “
Meshless Methods: An Overview and Recent Developments
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
139
, pp.
3
47
.
31.
Li
,
S.
, and
Liu
,
W. K.
, 2002, “
Meshfree and Particle Methods and Their Application
,”
Appl. Mech. Rev.
0003-6900,
55
, pp.
1
34
.
32.
Hughes
,
T. J. R.
,
Cottrell
,
J. A.
, and
Bazilevs
,
Y.
, 2005, “
Isogeometric Analysis: CAD, Finite Elements, NURBS, Exact Geometry, and Mesh Refinement
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
194
, pp.
4135
4195
.
You do not currently have access to this content.