This paper deals with the nonusual case in structural dynamics for which a complex structure exhibits both the usual global elastic modes and numerous local elastic modes in the low-frequency range. Despite the presence of these local elastic modes, we are interested in constructing a stochastic reduced-order model using only the global modes and in taking into account the local elastic modes with a probabilistic approach. In the first part, a formulation and an algorithm, which allow the “global elastic modes” and the “local elastic modes” to be calculated, are presented. The second part is devoted to the construction of the stochastic reduced-order model with the global elastic modes and in taking into account the uncertainties on the effects of the local elastic modes by the nonparametric probabilistic approach. Finally, an application, which validates the proposed theory is presented.

References

1.
Argyris
,
J.
, and
Mlejnek
,
H. P.
, 1991,
Dynamics of Structures
, North-Holland, Amsterdam.
2.
Clough
,
R. W.
, and
Penzien
,
J.
, 1975,
Dynamics of Structures
,
McGraw-Hill
,
New York
.
3.
Inman
,
D. J.
, 1989,
Vibration: With Control, Measurement, and Stability
,
Prentice-Hall
,
Englewood Cliffis, NJ
.
4.
Meirovitch
,
L.
, 1990,
Dynamics and Control of Structures
,
Wiley
,
New York
.
5.
Morand
,
H. J. P.
, and
Ohayon
,
R.
, 1995,
Fluid Structure Interaction
,
Wiley
,
New York
.
6.
Ohayon
,
R.
, and
Soize
,
C.
, 1998,
Structural Acoustics and Vibration
,
Academic
,
San Diego
.
7.
Hurty
,
W. C.
, 1965, “
Dynamic Analysis of Structural Systems Using Component Modes
,”
AIAA J.
,
3
(
4
), pp.
678
685
.
8.
Bampton
,
M. C. C.
, and
Craig
,
R. R.
, 1968, “
Coupling of Substructures for Dynamic Analyses
,”
AIAA J.
,
6
(
7
), pp.
1313
1319
.
9.
MacNeal
,
R. H.
, 1971, “
A Hybrid Method of Component Mode Synthesis
,”
Comput. Struct.
,
1
(
4
), pp.
581
601
.
10.
Rubin
,
S.
, 1975, “
Improved Component-Mode Representation for Structural Dynamic Analysis
,”
AIAA J.
,
13
(
8
), pp.
995
1006
.
11.
Leung
,
A. Y. T.
, 1993,
Dynamic Stiffness and Substructures
,
Springer-Verlag
,
New York
.
12.
Farhat
,
C.
, and
Geradin
,
M.
, 1994, “
On a Component Mode Synthesis Method and Its Application to Incompatible Substructures
,”
Comput. Struct.
,
51
(
5
), pp.
459
473
.
13.
Ohayon
,
R.
,
Sampaio
,
R.
, and
Soize
,
C.
, 1997, “
Dynamic Substructuring of Damped Structures Using Singular Value Decomposition
,”
Trans. ASME, J. Appl. Mech.
,
64
(
2
), pp.
292
298
.
14.
Gawronski
,
W.
, 1998,
Dynamics and Control of Structures, A modal Approach
,
Springer-Verlag
,
New York
.
15.
Skelton
,
R. E.
, 1988,
Dynamic Systems Control
,
Wiley
,
New York
.
16.
Soize
,
C.
, 1986, “
Probabilistic Structural Modeling in Linear Dynamic Analysis of Complex Mechanical Systems, I—Theoretical Elements
,”
La Recherche Aérospatiale
,
5
, pp.
23
48
.
17.
Soize
,
C.
, 1993, “
A Model and Numerical Method in the Medium Frequency Range for Vibroacoustic Predictions Using Theory of Structural Fuzzy
,”
J. Acoust. Soc. Am.
,
94
(
2
), pp.
849
866
.
18.
Sparrow
,
V. W.
,
Russel
,
D. A.
, and
Rochat
,
J. L.
, 1994, “
Implementation of Discrete Fuzzy Structure Models in Mathematica
,”
Int. J. Numer. Methods Eng.
,
37
, pp.
3005
3014
.
19.
Russell
,
D. A.
, and
Sparrow
,
V. W.
, 1995, “
Backscattering From a Baffled Finite Plate Strip With Fuzzy Attachments
,”
J. Acoust. Soc. Am.
,
98
(
3
), pp.
1527
1533
.
20.
Pierce
,
A. D.
,
Sparrow
,
V. W.
, and
Russel
,
D. A.
, 1995, “
Fundamental Structural-Acoustic Idealizations for Structures With Fuzzy Internal
,”
J. Vibr. Acoust.
,
117
, pp.
339
348
.
21.
Maidanik
,
G.
, 1995, “
Power Dissipation in a Sprung Mass Attached to a Master Structure
,”
J. Acoust. Soc. Am.
,
98
(
6
), pp.
3527
3533
.
22.
Strasberg
,
M.
, and
Feit
,
D.
, 1996, “
Vibration Damping of Large Structures Induced by Attached Small Resonant Structures
,”
J. Acoust. Soc. Am.
,
99
(
1
), pp.
335
344
.
23.
Weaver
,
R. L.
, 1996, “
The Effect of an Undamped Finite Degree of Freedom Fuzzy Substructure: Numerical Solutions and Theoretical Discussion
,”
J. Acoust. Soc. Am.
,
100
(
5
), pp.
3159
3164
.
24.
Langley
,
R. S.
, and
Bremmer
,
P.
, 1999, “
A Hybrid Method for the Vibration Analysis of Complex Structural-Acoustic Systems
,”
J. Acoust. Soc. Am.
,
105
(
3
), pp.
1657
1672
.
25.
Friis
,
L.
, and
Ohlrich
,
M.
, 2008, “
Vibration Modeling of Structural Fuzzy With Continuous Boundary
,”
J. Acoust. Soc. Am.
,
123
(
2
), pp.
718
728
.
26.
Fernandez
,
C.
,
Soize
,
C.
, and
Gagliardini
,
L.
, 2009, “
Fuzzy Structure Theory Modeling of Sound-Insulation Layers in Complex Vibroacoustic Uncertain Sytems—Theory and Experimental Validation
,”
J. Acoust. Soc. Am.
,
125
(
1
), pp.
138
153
.
27.
Bucher
,
I.
, and
Braun
,
S. G.
, 1997, “
Left Eigenvectors: Extraction From Measurements and Physical Interpretation
,”
Trans. ASME, J. Appl. Mech.
,
64
(
1
), pp.
97
105
.
28.
Hansen
,
P. C.
, 1987, “
The Truncated SVD as a Method for Regularization
,”
BIT Numerical Mathematics
,
27
(
4
), pp.
534
553
.
29.
Bathe
,
K. J.
, and
Wilson
,
E. L.
, 1976,
Numerical Methods in the Finite Element Method
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
30.
Zienkiewicz
,
O. C.
, and
Taylor
,
R. L.
, 2000,
The Finite Element Method
, 5th ed.,
Butterworth-Heinemann
,
Oxford
.
31.
Chan
,
H. C.
,
Cai
,
C. W.
, and
Cheung
,
Y. K.
, 1993, “
Convergence Studies of Dynamic Analysis by Using the Finite Element Method With Lumped Mass Matrix
,”
J. Sound Vib.
,
165
(
2
), pp.
193
207
.
32.
Jensen
,
M. S.
, 1996, “
High Convergence Order Finite Elements With Lumped Mass Matrix
,”
Int. J. Numer. Methods Eng.
,
39
(
11
), pp.
1879
1888
.
33.
Belytschko
,
T.
, and
Mindle
,
W. L.
, 1980, “
Flexural Wave-Propagation Behavior of Lumped Mass Approximations
,”
Comput. Struct.
,
12
(
6
), pp.
805
812
.
34.
Guyan
,
R. J.
, 1965, “
Reduction of Stiffness and Mass Matrices
,”
AIAA J.
,
3
, pp.
380
388
.
35.
Schueller
,
G. I.
, 2005, “
Computational Methods in Stochastic Mechanics and Reliability Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
12–16
), pp.
1251
1795
.
36.
Soize
,
C.
, 2000, “
A Nonparametric Model of Random Uncertainties on Reduced Matrix Model in Structural Dynamics
,”
Probab. Eng. Mech.
,
15
(
3
), pp.
277
294
.
37.
Soize
,
C.
, 2005, “
Random Matrix Theory for Modeling Random Uncertainties in Computational Mechanics
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
12–16
), pp.
1333
1366
.
38.
Chebli
,
H.
, and
Soize
,
C.
, 2004, “
Experimental Validation of a Nonparametric Probabilistic Model of Non Homogeneous Uncertainties for Dynamical Systems
,”
J. Acoust. Soc. Am.
,
115
(
2
), pp.
697
705
.
39.
Chen
,
C.
,
Duhamel
,
D.
, and
Soize
,
C.
, 2006, “
Probabilistic Approach for Model and Data Uncertainties and Its Experimental Identification in Structural Dynamics: Case of Composite Sandwich Panels
,”
J. Sound Vib.
,
294
(
1–2
), pp.
64
81
.
40.
Duchereau
,
J.
, and
Soize
,
C.
, 2006, “
Transient Dynamics in Structures With Nonhomogeneous Uncertainties Induced by Complex Joints
,”
Mech. Syst. Signal Process.
,
20
(
4
), pp.
854
867
.
41.
Durand
,
J.-F.
,
Soize
,
C.
, and
Gagliardini
,
L.
, 2008, “
Structural-Acoustic Modeling of Automotive Vehicles in Presence of Uncertainties and Experimental Identification and Validation
,”
J. Acoust. Soc. Am.
,
124
(
3
), pp.
1513
1525
.
42.
Shannon
,
C. E.
, 1948, “
A Mathematical Theory of Communication
,”
Bell Syst. Tech. J.
,
27
, pp.
379
423
and pp. 623–659.
43.
Jaynes
,
E. T.
, 1957, “
Information Theory and Statistical Mechanics
,”
Phys. Rev.
,
106
(
4
), pp.
620
630
and 108(2), pp. 171–190.
You do not currently have access to this content.